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Abstract
In this paper we aim to investigate the problems and potentialities of species distribution modeling (SDM) as a tool for conservation 
planning and policy development and implementation in tropical regions. We reviewed 123 studies published between 1995 and 
2007 in five of the leading journals in ecology and conservation, and examined two tropical case studies in which distribution 
modeling is currently being applied to support conservation planning. We also analyzed the characteristics of data typically used for 
fitting models within the specific context of modeling tree species distribution in Central America. The results showed that 
methodological papers outnumbered reports of SDMs being used in an applied context for setting conservation priorities, 
particularly in the tropics. Most applications of SDMs were in temperate regions and biased towards certain organisms such as
mammals and birds. Studies from tropical regions were less likely to be validated than those from temperate regions. Unpublished 
data from two major tropical case studies showed that those species that are most in need of conservation actions, namely those 
that are the rarest or most threatened, are those for which SDM is least likely to be useful. We found that only 15% of the tree 
species of conservation concern in Central America could be reliably modelled using data from a substantial source (Missouri 
Botanical Garden VAST database). Lack of data limits model validation in tropical areas, further restricting the value of SDMs. We 
concluded that SDMs have a great potential to support biodiversity conservation in the tropics, by supporting the development of 
conservation strategies and plans, identifying knowledge gaps, and providing a tool to examine the potential impacts of 
environmental change. However, for this potential to be fully realized, problems of data quality and availability need to be 
overcome. Weaknesses in current biological datasets need to be systematically addressed, by increasing collection of field survey 
data, improving data sharing and increasing structural integration of data sources. This should include use of distributed databases 
with common standards, referential integrity, and rigorous quality control. Integration of data management with SDMs could 
significantly add value to existing data resources by improving data quality control and enabling knowledge gaps to be identified. 

Keywords: Collecting effort, Biodiversity conservation, Data shortage, Geographical bias, Niche-based models, Statistical modeling.

Resumen
En este trabajo se investigan los problemas y potencialidades de los modelos de distribución de especies (SDM de sus siglas en 
inglés) como una herramienta para el desarrollo e implementación de estrategias y políticas de conservación en regiones tropicales. 
Se revisaron 123 estudios publicados entre 1995 y 2007 en cinco de las revistas científicas más influyentes en el campo de la
ecología y la conservación, y se examinaron dos casos de estudio en regiones tropicales en los cuales los modelos de distribución de 
especies se han utilizado para diseñar planes de conservación a nivel regional. También se analizaron las características de datos 
típicamente utilizados para ajustar modelos de distribución de especies, tomando como ejemplo la distribución de árboles en 
Centroamérica. Los resultados mostraron que los trabajos metodológicos superan a los estudios que utilizan los modelos de 
distribución de especies en un contexto más aplicado para definir prioridades de conservación, especialmente en los trópicos. La 
mayoría de las aplicaciones de los modelos de distribución de especies se han desarrollado en regiones templadas y están sesgadas 
hacia ciertos organismos, como mamíferos y aves. Además, en regiones tropicales, los modelos están, por lo general, menos 
validados que en zonas templadas. Dos casos de estudio no publicados en revistas científicas mostraron que las especies que más 
necesitan la implementación de medidas de conservación, concretamente las más raras y amenazas, son aquellas para las cuales los 
modelos de distribución de especies tienen menos probabilidades de ser aplicados con éxito. En Centroamérica, tan solo el 15% de 
las especies de árboles pudieron ser modeladas utilizando una fuente sustancial de registros obtenidos de la base de datos VAST del 
Missouri Botanical Garden. La ausencia de datos limita la validación de los modelos en áreas tropicales, lo que a su vez restringe 
considerablemente la aplicación de los modelos de distribución de especies. A pesar de dichas limitaciones, los modelos de 
distribución de especies tienen un gran potencial para la conservación de la biodiversidad de los trópicos, pudiendo contribuir al 
desarrollo de planes y estrategias de conservación, la identificación de vacíos de información y la generación de herramientas que 
examinen el impacto potencial de los cambios ambientales sobre la distribución de las especies. Sin embargo, para que este 
potencial sea aprovechado al máximo, es importante considerar algunos de los problemas relacionados con la falta de datos y su 
calidad. Para ello, es necesario abordar sistemáticamente las debilidades de algunas de las bases de datos biológicos existentes 
incrementando los muestreos de campo, mejorando el intercambio de datos y la integración estructural de distintas fuentes de 
datos. Esto incluye el uso de bases de datos distribuidas bajo estándares comunes, la integridad referencial y el control riguroso de 
la calidad de los datos. La integración de la gestión de datos a través de modelos de distribución de especies aportaría un valor 
añadido a las fuentes de datos actuales al mejorar el control de su calidad y permitir la identificación de vacíos de información.

Palabras clave: Ausencia de datos, Conservación de la biodiversidad, Esfuerzo de colecta, Modelación estadística, 
Modelos de nicho, Sesgos geográficos 
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Introduction
Predictive species distribution models are empirical models relating field observations to environmental 
variables, based on statistically or theoretically derived response surfaces [1, 2]. The most common 
strategy for estimating the potential geographic distribution of a species is to characterize the 
environmental conditions that are suitable for that species. The spatial distribution of environments that 
are suitable for a species can then be estimated across a given study region. A wide variety of modeling
techniques have been developed for this purpose (see Appendix 1), including generalized linear models,
generalized additive models, bioclimatic envelopes, habitat suitability indices, and the genetic algorithm 
for rule-set prediction (GARP).

Species distribution modeling (SDM) has become increasingly popular in recent years among researchers. 
It has been used to address a variety of different problems at various scales, with a range of different 
species occurring in different geographic areas. Applications of SDM methods include quantifying the 
environmental niche of species [3, 4], testing biogeographical, ecological, and evolutionary hypotheses [5, 
6, 7], assessing species' invasions [8, 9], assessing the impact of climate, land use, and other 
environmental changes on species distribution [10, 11, 12], suggesting unsurveyed sites of high potential 
of occurrence for rare species [13, 14, 15], and supporting conservation planning and reserve selection 
[16, 17]. 

There are several particular advantages to using SDM to support conservation planning: (1) Maps of 
documented occurrences of species convey no information on the likelihood of occurrence in areas that 
have not been surveyed. Range maps from field guides and similar data are often too coarse to be useful 
for on-the-ground conservation action or research. (2) Accurate predictive distribution maps make field 
inventories more efficient and effective. They show where to commit the limited available resources for 
inventories by highlighting the areas where a targeted species or habitat type is most likely to be found. 
(3) Predictive distribution maps for multiple species or habitat types, produced with consistent and 
reliable methods, are well suited for identifying spatial patterns in biological diversity, which can be of 
value for assessing conservation priorities. (4) Predictive distribution maps are very useful for 
conservation planning efforts at a range of different scales. As a result of these advantages, in the last 
decade, a number of  international organizations have employed species modeling in order to address key 
policy objectives at a global scale (e.g., UNEP, the Convention of Biological Diversity, Organization for 
Economic Co-operation and Development, European Union, Conservation International, IUCN, WWF, 
etc.).

Several statistical issues, however, stand as obstacles for species distribution analysis. The first and 
foremost is data availability [18]. Much biodiversity has yet to be formally described and catalogued. In 
general, this problem—the so-called “Linnean shortfall” [19]—appears to be of increasing relevance as 
the organisms decrease in size [20]. In addition, knowledge of the global, regional, and even local 
distributions of many taxa is currently inadequate, a problem that Lomolino [21] named the “Wallacean 
shortfall.” Many areas of the world remain seriously under-collected for most taxa, with the result that 
even for higher plants, reliable systematic species range maps are available only for a fraction of the 
earth's surface [20]. Many of these problems are particularly intense in tropical areas. Whereas it is widely 
appreciated that most megadiverse areas occur in the tropics [22], rates of habitat loss and 
environmental degradation also tend to be higher in tropical regions [23, 24, 25, 26, 27]. Therefore, the 
need for tools to assist conservation planning, policy development, and implementation is particularly 
urgent in tropical regions. 

In this paper, we first examine the extent to which SDM techniques are being developed and applied in 
tropical regions, based on the results of a literature review. We then use this review to evaluate the scope 
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and objectives of SDM initiatives in tropical areas, in comparison to those undertaken in temperate 
regions. We then explore the potential limitations to the application of SDM in the tropics, by examining 
two case studies in detail. Finally, we discuss how the potential value of SDM approaches might best be 
realized in future, given the current limitations that exist. 

Literature review
We conducted a literature search on the Web of Science using the keywords “species distribution” AND 
“model.” We selected the five journals containing the largest number of studies using SDM that could be 
considered to provide information suitable for guiding conservation policies. The selected journals were 
Biological Conservation, Conservation Biology, Diversity and Distributions, Global Ecology and 
Biogeography, and Journal of Applied Ecology. We reviewed all papers published between January 1995 
and May 2007, selecting those that had used SDMs to predict species distributions, but excluding review 
papers and studies using raw geographical data without the inclusion of statistical models. Our search 
yielded 123 papers (Appendix 2, references are provided in Appendix 3) that satisfied the inclusion 
criteria. From each study we extracted the following information: (1) study region; (2) aim of the study 
(classified as “methodological” if it focused on the development of modeling methods or compared the 
accuracy of different modeling techniques; or “applied” if it involved the application of SDM methods to 
practical conservation problems, such as biological invasions, climate change, conservation prioritization,
and biodiversity mapping); (3) model validation (classified according to the approaches used as “non 
reported,” “validated with the same data,” “k-fold partitioning,” “prospective sampling,” and “informal 
validation”); (4) focal taxa; and (5) data type (classified as “presence only,” “presence-absence,” and 
“abundance” data).

Most studies in our literature review were conducted using data from relatively well sampled countries 
(Appendix 2), such as the USA and Canada (28), Australia (10), or European countries (48). Relatively few 
used data from tropical regions such as Central and South America (8), Africa (10), or Asia (6).

We found that 39% of papers (48) focused on the development or evaluation of methods rather than on 
their application (Appendix 2 ). This is an unexpectedly high proportion, taking into account exclusion of 
methodological journals such as Ecological Modelling. These papers documented studies presenting new 
methodologies for predicting species distributions [e.g., 28, 29, 30], and those evaluating the performance 
of different models [e.g., 31, 32, 33]. Some also explored a variety of issues related to spatial scale and 
extent [e.g., 34, 35], model accuracy [e.g., 36, 37], or variable selection [e.g., 38]. Overall, the high 
proportion of methodological papers may be indicating that the use of these techniques are not free of 
controversy in their application. Among those studies that used SDM in a more applied context, there was 
a broad mixture of goals, including species conservation (29 papers), biological invasions (14 papers), 
climate change (10 papers), autoecology (7 papers), and biogeography (6 papers). Conservation 
prioritization was mentioned in only six papers and biodiversity mapping in three. When stratified by 
biomes, it can be observed that most methodological studies were carried out in temperate regions, while 
applied studies tended to be conducted in tropical regions (Fig. 1a).

It is generally accepted that a robust test for the prediction success of a model should include 
independent data, i.e., data not used to develop the predictive model. However, only 13% of the 
reviewed studies (17) validated SDMs using a new sample of cases obtained from a different region or 
time after the model had been developed (referred to as prospective sampling in Appendix 2). Just 8% of 
studies (10) used some sort of informal validation, e.g., by comparing the SDMs with existing distribution 
atlases [40, 41] or through literature review [42]. A large proportion of studies (48; 38%) partitioned the 
data into subsets and used one of these sets for training and the remaining sets for testing purposes. 
Though this is a common practice, data partitioning is not the same as collecting new independent data 
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for model testing [43], particularly if predictions are to be tested for their general use. Only if predictions 
are to be restricted to a homogeneous region can data-partitioning be expected to output similar results 
than prospective sampling [44]. Finally, 17% of studies (22) used the same data for training and testing, 
and 24% (31) did not report any validation at all. When stratified by biomes, the number of studies using 
prospective sampling or some sort of informal validation was proportionally higher in temperate (22%) 
than in tropical regions (15% respectively, Fig. 1b). On the contrary, the number of studies not reporting 
any form of validation or using data partitioning was proportionally higher in tropical (26% and 41% 
respectively) than in temperate regions (22% and 38%). The number of studies using the same dataset for 
validation was roughly the same (18%) for both temperate and tropical regions. Overall, this indicates that 
a large proportion of the reviewed studies—especially those undertaken in tropical regions—reported 
model results without rigorous testing of model properties. This was particularly the case in applied 
studies, where lack of reporting of validation and testing SDM with the same data was commonplace (Fig.
1c). In contrast, methodological studies accounted for the largest proportion of cases validated through 
prospective sampling.

Fig. 1. Number of studies reviewed grouped by (a) scope 
in relation to biome (temperate, tropical, world); (b) 
model validation method employed in relation to biome; 
and (c) scope in relation to model validation method 
employed.
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Most papers were published on birds (46), plants (34), or mammals (29, Appendix 2). Groups receiving 
less attention were reptiles (11), amphibians (7), fishes (2), lower plants (2), and invertebrates (24). 
Invertebrates encompassed many different taxa such as insects, arachnids, snails, crustaceans, and 
rotifers. The shortage of studies focusing on this group contrasts markedly with the high diversity of 
organisms that are represented within it.

Finally, 60 out of 123 papers used presence-only data for modeling species distributions, 60 used 
presence-absence data, and only seven used abundance data (from which four studies also used 
presence-absence data, Appendix 2). A high proportion of the studies conducted in tropical regions (73%) 
used presence-only data, whereas studies conducted in temperate regions most often used presence-
absence or abundance data (59%).

Overall, these results show that studies using SDM in the tropics are more scarce than in temperate 
regions, which stands in contrast with the high biodiversity held by tropical ecosystems. Fairly complete 
datasets from well-sampled regions make possible the development or evaluation of methods. However, 
these methods are not always as effective when applied to conservation case studies in tropical regions. 
Results from such case studies reveal data-driven constraints that limit the applicability of SDM, such as 
lack of independent information to validate the predicted distribution of species or lack of reliable 
absence data.

Application of SDM in the tropics: two case studies
To explore current approaches to applying SDM techniques in the tropics and highlight the problems 
encountered in greater depth, two case studies are described here in detail. Although none of these case 
studies have been published previously in scientific journals, they were selected because they were 
commissioned by conservation organizations, so they can potentially illustrate how well SDMs meet the 
expectations posed by governmental and non-governmental conservation organizations in tropical 
countries. The first study reported in this section was published on-line [45] and was part of a larger 
Andes-Amazon project commissioned by NatureServe. The second study was provided by one of the 
authors, who works for the Mexican Commission for the Knowledge and Use of Biodiversity (CONABIO).

The first study was conducted on the eastern slope of the Andes in Peru and Bolivia to model the real 
distribution of endemic species [45]. The study aimed to fill knowledge gaps in support of conservation 
planning in the Tropical Andes. The list of focal species included 115 birds, 55 mammals, 177 amphibians, 
and 435 plants. The Maxent algorithm was selected for modeling species distribution because previous 
comparative studies had shown that it performs well even with small sample sizes [46, 47, 48]. Maxent 
output predicted four distributions for each species using all the available locality data but varying the 
input environmental layers (see [45] for further details). Because of the scarcity and low spatial precision 
of available locality data, it was not possible to partition the data into records used for training the model 
and those set aside for a statistical model evaluation. Alternatively, specialists in each group reviewed and 
selected which, if any, of the four models reflected a realistic depiction of the distribution. This decision 
was based partly on validation with the same dataset used for modeling and partly on expert judgment. In 
the cases in which a Maxent model was considered to be reasonable, the reviewers then selected a cut-
off threshold to convert the continuous Maxent predictions to presence-absence maps. Despite the 
alleged suitability of this method for this purpose [46, 47, 48], there were many cases were the Maxent 
models did not produce a realistic distribution map for the species. In such cases, deductive and hybrid 
models were relied on. Deductive models were created by defining the maximum and minimum 
elevations at which the species was expected to occur. Hybrid models used part of the Maxent prediction 
in one portion of the species' range and a deductive model for the remaining area. Table 1 shows that a 
large proportion of the target species could not be effectively modelled with Maxent. Endemic 
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amphibians and plants were particularly challenging; 52.0% and 39.3% of the Maxent models for these 
two groups, respectively, did not produce realistic distribution maps. Similarly, the mean number of 
records per species and the number of species with one record for endemic amphibians (6.0 and 36.7% 
respectively) and plants (7.0 and 28.3%, respectively) were comparatively smaller than for birds (21.2. and 
2.6%, respectively) and mammals (11.2 and 7.3%, respectively) (Table 1). This highlights the problems of 
using objective modeling approaches for analyzing range delimitation when quantitative data are lacking.

Table 1. Summary of biological data and modeling methods used in the prediction of endemic species 
distributions on the east slope of the Andes in Peru and Bolivia [45]. The Maxent method was used for 
modeling when possible. Where this method did not output a realistic distribution map for the species, 
deductive and hybrid models were used. Deductive models were created by defining the maximum and 
minimum elevations at which the species was expected to occur. Hybrid models used part of the 
Maxent prediction in one portion of the species' range and a deductive model for the remaining part. In 
brackets, the proportion of the species in each taxon modelled with each of the three methods is given.

Modeling methods used

Taxon
Number of 

species

Maximum 
number of 
records per 

species

Number of 
species with 
one record

Mean number 
of records per 

species
Maxent Hybrid Deductive

Birds 115 94 3 (2.6) 21.2 99 (86.1) 6 (5.2) 10 (8.7)
Mammals 55 70 4 (7.3) 11.2 47 (85.5) 0 (0t.0) 8 (14.5)

Amphibians 177 64 65 (36.7) 6.0 85 (48.0) 8 (4.5) 84 (47.5)

Plants 435 84 123 (28.3) 7.0 264 (60.7) 18 (4.1) 153 (35.2)

Our second example refers to the Gap Analysis for terrestrial biodiversity in Mexico
(http://www.conanp.gob.mx/pdf_vacios/terrestre.pdf), an initiative coordinated by CONABIO and 
CONANP (National Commission for Protected Areas). This initiative aims to assess the efficiency of the 
current network of protected areas to conserve a representative part of the country’s biodiversity and 
generate a strategy for adapting the protected area system [48]. As part of this task, species distribution 
maps were generated by experts on several taxonomic groups using the GARP algorithm [50] (Table 2). 
Species geographical distributions were constructed from raw occurrence data obtained from the 
National Biodiversity Information System (SNIB,CONABIO) and the World Information Network on 
Biodiversity (REMIB), in combination with datasets of environmental variables believed to affect species 
distributions in Mexico. Data layers included climatic variables from Worldclim 
(http://www.worldclim.org/), topographic and hydrologic parameters from Hydro1k 
(http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html), and thematic national datasets 
from INEGI and CONABIO. The species selected for this purpose were catalogued under the Mexican Red 
List of Threatened Species NOM-059-SEMARNAT-2001, were range restricted or rare, or belonged to 
taxonomic groups of particular conservation concern (e.g., Agavacea spp., Opuntia spp.). Because the 
GARP algorithm had proved to be ineffective in earlier studies when few records were available [e.g., 51], 
the decision was made to model only species with at least eight records. This excluded 56% of the species 
catalogued under the Mexican Red List, and 35% of the non-threatened species (Table 2). Amphibians and 
reptiles distribution maps were validated with the best subset procedure, using half of the data to build 
the model and the other half to test the predictive ability of the model (i.e., data partitioning). SDMs for 



Mongabay.com Open Access Journal  - Tropical Conservation Science   Vol. 2 (3):319-352, 2009

Tropical Conservation Science | ISSN 1940-0829 | Tropicalconservationscience.org
326

mammals and plants were validated with data from a literature search and expert knowledge (i.e.,
informal validation). In addition, knowledge on the ecology and biogeography of the species, coarse-scale 
maps (ecoregions, biogeographic realms), and auxiliary datasets held by experts (e.g., sightings and field 
specimens not included in the datasets used for modeling) were used to trim SDMs in order to eliminate, 
at least to some extent, possible model over-predictions and improve estimates of the actual species 
distributions. This highlights the limitations of SDM for conservation of endangered species, as sufficient 
data for effective application of SDM are only available for a small minority of species. Consequently, 
those species that are most likely to require conservation action, namely those that are the rarest or most 
threatened, are those for which SDM is least likely to be useful.

Table 2. Number of species targeted for distribution modeling by CONABIO, as part of a national conservation 
assessment initiative between 2004 and 2006 [49]. A total of 1,843 were initially selected for modeling, including 
166 amphibians and 435 reptiles [102] (Flores-Villela, unpublished data), 336 trees, 294 agave species and 612 plant 
species not included in any of the previous categories (shrubs, grasses, etc., CONABIO, unpublished data). The table 
shows the number of species whose distributions were and were not successfully modelled using GARP [49]. 
Species distribution models (SDM) were not successful when there were fewer than eight records available. 71.1% 
of the target species (1311) were catalogued under the Mexican Red List of Threatened Species NOM-059-
SEMARNAT-2001 and were, therefore, of particular conservation concern. In brackets, percentage of the species 
successfully and unsuccessfully modelled under each of the three categories is given.

The main lesson that can be drawn from these case studies is that statistical modeling is not effective 
when few data points are available. SDMs fail to produce reliable predictions in cases where the 
distribution data is very limited and, in such cases, predictions must rely mostly on subjective judgment. 
We believe that the problems encountered in these two case studies are common to many tropical taxa 
and regions, as explored in the following section.

Problems of applying SDM approaches in tropical regions
Data shortage
The most important problem that species distribution modellers in tropical regions often have to face is 
the small number of available data points. Lack of information about the distribution of organisms, what 
has been referred to as the “Wallacean shortfall” [21], is widely recognised to be a major constraint to 
conservation planning in the tropics [22, 52, 53, 54]. In addition, it represents a problem to SDM 
approaches. Previous studies have shown that a sample size lower than around 70 observations decreases 
the performance of SDMs [55, 56, 57]. Drake et al. [29] studied how model performance depends on the 
sample size of the training dataset, and concluded that at least 40 observations were necessary to obtain 
consistent models using support vector machine-based methods (see Appendix 1). The GARP algorithm 

Threatened Non threatened Total
Successful Unsuccessful Successful Unsuccessful Successful Unsuccessful

Amphibians 87 (52.4) 79 (47.6) 0 (0.0) 0 (0.0) 87 (52.4) 79 (47.6)
Reptiles 234 (53.8) 201 (46.2) 0 (0.0) 0 (0.0) 234 (53.8) 201 (46.2)
Trees 90 (60.4) 59 (39.6) 180 (96.3) 7 (3.7) 270 (80.4) 66 (19.6)
Agave spp. 18 (37.5) 30 (62.5) 90 (36.6) 156 (63.4) 108 (36.7) 186 (63.2)
Other plants 139 (27.1) 374 (72.9) 76 (76.8) 23 (23.2) 215 (35.1) 397 (64.9)

Total 568 (43.3) 743 (56.7) 346 (65.0) 186 (35.0) 914 (49.6) 929 (51.4)
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was reported to consistently under-predict the distribution of mammal species in poorly surveyed regions 
of west-central Guyana [51]. 

To analyze the characteristics of the data typically available for fitting SDMs in the tropics, we 
downloaded presence-only data (hereafter referred to as “records”) of all known tropical tree species in 
Central America from the VAST database of the Missouri Botanical Garden (MOBOT, 
http://mobot.mobot.org/W3T/Search/vast.html). We excluded records without geographical coordinates, 
or with coordinates derived from political districts. This provided a list of 3,359 species with a total of 
135,241 records. We found that 8% of the species consisted of a single record, 21% had fewer than five 
records, and 50% fewer than 17 records. If a limit of 40 known occurrence points is considered to be the 
minimum for rigorous modeling (following Drake et al. [29]), the distribution of only 30% of the species 
could be effectively modelled using this dataset. In addition, 313 of these species have been categorized 
as at risk of extinction (CR, EN, VU) in the IUCN Red List, and are thus potentially of some conservation 
concern. Only 15% of these were found to have more than 40 records, while 40% had fewer than five. The 
most-collected species in the list were those considered to be of least conservation concern. This pattern 
seems to be the case in many other regions of the world [58, 59].

Data paucity has a range of causes. It can occur even when collection effort is relatively intense. Small-
bodied or nocturnal species can be difficult to detect. Many species are genuinely rare, but rarity takes 
many different forms [60, 61]. A species can have a broad range but have low population abundances, or 
a narrow range, but be locally abundant. Additionally, data shortage can result from sampling bias 
towards certain taxa [62]. As noted in the literature review, some groups of organisms (such as birds and 
mammals) tend to attract greater interest from researchers than others. This bias has been well 
documented; Keddy [63] refers to it as “moose-goose” syndrome. The distribution of many groups of 
taxa, such as invertebrates, reptiles, amphibians, bryophytes, and fungi, tends to be relatively poorly 
documented. 

Table 3. Density of tropical tree herbaria specimens for Central America and Great Britain. Collection 
data for Central America has been obtained from the Missouri Botanical Garden VAST database 
(http://mobot.mobot.org/W3T/Search/vast.html) for a total of 3,359 tropical tree species. Collection 
data for Great Britain has been obtained from the New Atlas of British and Irish Flora and from the 
National Biodiversity Network (http://www.searchnbn.net) for a total of 137 tree species. Collection 
data for the Netherlands has been obtained from the Florbase (www.florbase.nl) database and the 
'landelijke vegetatie datbase' (www.synbiosys.alterra.nl/lvd) for a total of 206 tree species.

Country
Number of 
specimens

Land area 
(km2)

Data density 
(specimens/100 

km2)

Number of tree 
species in 
collections

Tropical Mexico1 18,756 442,858 4.2 1672
Guatemala 6575 108,889 6.0 1162
Honduras 8470 112,088 7.6 1105
Nicaragua 27,837 130,000 21.4 1301
El Salvador 4820 21,041 22.9 681
Panama 25,262 75,517 33.4 2253
Belize 8508 22,966 37.0 820
Costa Rica 34,372 51,100 67.3 1954
Great Britain and Ireland 590,560 315,100 187.1 137
The Netherlands 1,377,537 41,528 3,317.3 206

1 Tropical Mexico includes the states of Yucatan, Quintana Roo, Campeche, Tabasco, Chiapas, Oaxaca and Veracruz.
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In addition, collecting effort is also unevenly distributed across countries (Table 3). If we compare the 
spatial density of tree collection specimens for different countries of Central America we find large 
differences in proportional collecting effort. Based on these data, the biodiversity of large countries 
appears to receive proportionally less research attention than that of smaller countries. In the Neotropics, 
large countries also tend to attract proportionally fewer visiting researchers per unit area. Tropical 
Mexico, Guatemala, and Honduras have low data density (4.2, 6.0 and 7.6 collection data 100 km-2, 
respectively), while Costa Rica and Belize both have relatively high data densities of up to 67.3 collection 
data 100 km-2 (Table 3). Yet all these data densities are low when compared with those of well-sampled 
countries such as Great Britain and Ireland or the Netherlands, where even with fewer tree species (137 
and 206 species, respectively), much higher data densities have been recorded (187 and 3,317 records 
100 km-2, respectively) (Table 3). 

There is also some evidence that the collecting effort for tropical taxa is declining, at least for some 
groups. The Mexican butterfly database described by Llorente et al. [64] contained 36,685 records 
collected between 1900 and 1990. When analyzing the utility of this database for conservation, Soberón
et al. [65] found an abrupt increase in collecting effort in the 1970s and 1980s. Collecting effort in the 
1990s, however, decreased to levels similar to the average between 1910 and 1950. We found similar 
trends for: (1) tropical tree species in Central American countries (Fig. 2), with collecting efforts mostly 
peaking between 1980 and 1990 and decreasing progressively from 1990 onwards; and (2) plants (all 
phyla) in Brazil, Thailand, and Madagascar (Fig. 3), with collecting effort dropping after peaking in the 
1980's, 90's and 50's, respectively.

Fig. 2. Distribution of collecting effort (number of 
biological records) over time for tropical tree 
species in Central American countries. Collection 
data was obtained from the Missouri Botanical 
Garden VAST database for a total of 3,359 
tropical tree species : 
http://mobot.mobot.org/W3T/Search/vast.html)
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Data quality issues
Guisan et al. [66] clearly demonstrated the importance of data quality for model performance. Based on a 
high-quality database they compared several modeling techniques for predictive accuracy and sensitivity 
to, among others, location error, changes in map resolution, and sample size. They found that sample size 
and location error affected model performance in particular. Ideally, in order to model species 
distributions, sampling effort should be uniform across the species’ range, so that all recorded variations
in distribution patterns are real and not the result of variation in sampling effort [67, 68]. However, 
systematic surveys of large areas are rare, and therefore models focusing on large-scale patterns of 
species distribution often rely on incomplete and geographically biased information [68, 69, 70, 71, 72, 
73]. This is particularly true for models based on specimen collections in herbaria and natural history 
museums [74]. Collection data are inherently biased in many respects [73, 75, 76]; therefore, models 
based on such data may lead to inaccurate predictions. 

Fig. 3. Distribution of collecting 
effort (number of biological 
records) over time for plants (all 
phyla) in Brazil (10,528 species 
and 45,988 records), Thailand 
(6,868 species and 30,106 
records), and Madagascar (3169 
species and 6,497 records). 
Collection data were obtained 
from the Global Biodiversity 
Information Facility 
(http://www.gbif.org/) in 
March 2008.
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Geographic bias can come in many different forms, though bias owing to accessibility and a focus on 
priority areas are probably the most important [68]. The existence of roadside bias (the so-called 
“highway effect”) in survey and collection data has often been emphasized [3, 62, 77, 78, 79, 80], but less 
frequently quantified [65, 68, 73, 81, 82]. A similar sampling bias has been observed along rivers [68] and 
near cities [68, 81]. The effect of nature reserves or priority areas on biological record collection 
intensities is potentially complex. A common pattern is for such areas to receive attention by collectors 
prior to their declaration as reserves, followed by a decline in collecting due to restrictions imposed when 
reserve status is granted. We could not detect, for example, any difference in a historically pooled sample 
of collections within and outside nature reserves in Mexico for species such as the deer mouse 
(Peromyscus sp.), or various endangered agave species (Agave spp., M. Kolb, unpublished data). Likewise, 
Freitag et al. [70] detected no bias of small mammal survey records towards nature reserves in South 
Africa. However, they found that large mammal data had been mostly collected within existing 
conservation areas. Similarly, Reddy and Dávalos [68] reported a bias of passerine bird samples towards 
areas now designated as conservation priorities in sub-Saharan Africa. 

The degree to which geographical bias affects the performance of distribution models has rarely been 
explored, but may be case specific. According to Kadmon et al. [73], a negative effect of roadside bias on 
predictive accuracy of bioclimatic models must follow from two necessary conditions: (1) climatic bias 
should affect the accuracy of model predictions; and (2) the road network should be biased climatically. 
Both conditions are met in tropical mountain regions where roads can be at low elevations and vegetation 
patterns are linked to altitudinally determined climatic gradients (D. Golicher and L. Cayuela, unpublished 
data). But even in apparently well surveyed regions and groups, such biases still produce inaccurate 
geographical model representations [83, 84], because the process of discovery of species distribution has 
occurred in a climatically or spatially structured fashion [85]. Stockwell and Peterson [86] suggest 
methods to correct this bias. However, these are difficult to implement when there are limited available 
data.

There is a well known general effect of geographical sampling bias in the context of SDM. When presence-
only data are used, pseudo-absences or background absences (hereafter both referred to as pseudo-
absences) are often used in order to fit models. Procedures for this are frequently integrated within the 
SDM software programs used by researchers, such is the case of GARP [50] or Maxent [48]. However, 
model users often do not explicitly investigate the properties of pseudo-absences or the impact of using 
pseudo-absences on overall model results. This is of paramount importance since, if there are not reliable 
absence data, the method of pseudo-absence selection strongly conditions the obtained model, 
generating different model predictions in the gradient between potential and realized distributions [87]. 
In addition, if a large area is being modelled, pseudo-absences may be taken from well beyond the 
species’ actual distribution limit. This can provide over-optimistic evaluation of a model's predictive ability 
from inspection of ROC curves [88]. This has been referred to as the “naughty noughts” effect [89]. It is 
not easily avoided if the data available to suggest credible bounds of a species distribution are the same 
data that are later used in the SDM.

In addition to geographic biases, there are frequently errors in the geographical coordinates of specimens 
and data collections. Before accurate GPS technology became available, specimen collectors used a 
variety of ad-hoc descriptive protocols to record the localities where collections were made. These textual 
descriptions were then converted into geographic coordinates using available cartography. Records made 
before the mid 1990s are therefore inherently imprecise. Where place names are ambiguous, 
geographical errors may be considerable. Species distribution databases rarely include an explicit 
measurement of geographic precision. However, the degree of precision can be inferred from examining 
the last digits of the coordinates. We found that 90% of data points from MOBOT had apparently been 
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rounded up to the nearest arcminute and 8% to the nearest degree. Small errors have relatively minor 
consequences when data are used in the context of a traditional distribution atlas. However, the effect of 
even small positional errors on modern statistical distribution models is potentially more severe. 
Environmental variables are fed into modeling algorithms as a result of overlaying the points on 
interpolated raster coverages. In mountainous tropical terrain, temperature and precipitation are strongly 
correlated with steep elevational gradients. Small positional errors can thus result in markedly different 
climate parameters being associated with a collection point. This is likely to produce poor or misleading 
models [66]. The severity of this effect is a function of the size of the error and the specific topography of 
the region.

A final problem related to data quality is the risk of species misidentification. This is particularly 
problematic when collating information from different sources, as different datasets may have been 
generated with different taxonomic concepts [18]. To merge several data sources into one homogenous 
dataset is an enormous challenge that usually dwarfs the time required to analyze these data [7].

Implications for conservation
Strengthening the applied role of SDM in tropical conservation
Being empirical, SDMs are explicitly data driven. The accuracy of model predictions depends critically on 
the quality and quantity of data. Biological databases are, by nature, incomplete and have heterogeneous 
spatial coverage [68, 69, 70, 71, 72, 73, 75, 76]. This has led to the development of techniques aimed at 
overcoming the analytical challenges posed by incomplete spatial coverage. However, an inevitable 
tension arises when data-driven models are applied to conservation problems. On the one hand, the 
fundamental motivation behind the modeling exercise may be to fill data gaps by suggesting present or 
future species distributions that have not actually been observed. On the other hand, the need for 
scientifically rigorous tests of model predictions places demands that frequently cannot be met by the 
limited data available for tropical species of conservation concern. 

Logistic difficulties and lack of resources remain a major barrier to data collection in the tropics [54]. At 
the same time, much invaluable data that have already been collected remain unavailable for modeling 
owing to unstructured data management. The successful collation of systematic records in relatively well-
studied temperate regions can provide a positive role model for strengthening tropical data resources 
[90]. For example, botanical records in Great Britain and Ireland have been well organized since 1954, 
when the Botanical Society of the British Isles (BSBI) systematically divided Great Britain and Ireland into 
3,500 10-km squares to aid surveying. The BSBI encouraged volunteer recorders to join their network. 
This was fundamental to the success of the project. By the following year, the BSBI network comprised 
1,500 recorders that contributed to the field survey [91]. As a result of such approaches, the UK National 
Biodiversity Network (NBN) now provides excellent on-line access to detailed wildlife information at the 
national scale (available at http://www.searchnbn.net). Datasets have been contributed by over 50 
distinct organizations and hold over 18 million records. A similar monitoring network is present in the 
Netherlands (Florbase), with more than 20 million records collected from the early 20th century onwards.

The British and the Dutch models rely on strengthening available formal collection data by drawing on 
qualified volunteer recorders. This bottom-up approach is also being promoted in some parts of the 
tropics, such as the BERDS database for Belize (http://www.biodiversity.bz/). The key feature of the 
Belizean initiative is the use of a spatially explicit relational database as a key tool for data storage,
display, and analysis. Other examples that show potential ways forward for effective collaboration and 
sharing of plot data are the RAINFOR initiative [92] and the Amazon Plot Network [93].
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Top-down initiatives can also strengthen the data available for SDMs, although they provide no new data 
by themselves. Because volunteer work is likely to be hindered by the high diversity of organisms present 
in most tropical ecosystems, top-down approaches may work better in the tropics than bottom-up ones. 
One such top-down initiative is the Global Biodiversity Information Facility (GBIF) [94]. GBIF has collated 
millions of data entries from natural history collections, library materials, and databases, though this 
information shows many of the taxonomic and geographic gaps and biases mentioned above [94]. Most 
of the information currently available still refers to developed countries. For example Spain has 97,295 
registered entries for plants, while in countries such as Madagascar, India, or Philippines there are only 
6,497, 1,544 and 2,639 available data entries respectively (data referring to March 2008 accessed through 
www.gbif.org). Another approach is the Conservation Commons (http://www.biodiversity.org/), which 
has identified a set of principles to promote sharing of biodiversity data, information, and knowledge to 
facilitate the conservation and sustainable use of biodiversity. These principles encourage organizations
and individuals alike to ensure open access to data, information, expertise, and knowledge related to the 
conservation of biodiversity. However, application of these principles has been limited to date. 

Such ongoing initiatives to improve data quality and quantity should support the future application of 
SDMs. Errors in geographic coordinates or taxonomic determination often become evident when SDMs 
are fitted to data. Although data cleaning is an unrewarding task for research scientists, the development 
of efficient methods for flagging and correcting dubious records could provide a clear applied role for 
SDMs [95]. Those involved in the design of data portals and the structure of databases should take into 
account the need of SDMs to connect directly with database servers as clients in order to automate 
computationally intensive iterated modeling [73]. This can now be easily achieved through protocols such 
as Open Data Base Connectivity (ODBC).

The resources being devoted to tropical field research are generally considered to be inadequate [54]. 
Many important aspects of the distribution and abundance of tropical organisms are likely to remain 
unknown. However, this also could reveal a positive application for SDMs. If a SDM provides poor 
predictions, this can be taken as a clear indication that more distribution data are required for the taxon 
in question. We also suggest that researchers using SDMs should become more open regarding the 
limitations of SDMs. This is particularly important when poor model results are clearly attributable to 
weak data rather than poorly constructed algorithms. Reviewers and editors should also be prepared to 
accept studies that rigorously document model failures as well as successes, in order to prevent the 
repetition of mistakes through over-optimistic expectations. 

Overall, the field of SDM needs a serious reflection about the conceptual basis that underlies species 
distribution models, as well as about the true meaning of their predictions (potential versus realized 
distribution) [97]. The design of future works evaluating, comparing, and applying species distribution 
modeling techniques should be thus rooted in a good understanding of their conceptual background. If 
species distribution models are to be a common-use tool for biodiversity research and conservation 
assessment, the foundations of their application must be much more solid than they are now [97].

Finally, since data quality problems and data shortage appear to be very common, a pressing question is: 
what can be done with such biased and incomplete information? Statistical modeling is not effective 
when few data points are available. In such cases, input from some sort of expert judgment is inevitably 
required in order to evaluate which of the outputs from species distribution models are most credible.
Expert knowledge is already recognized as an essential source of information for assessing the 
conservation status of species, given the lack of reliable quantitative information [59]. The development 
of tools to support the effective integration of expert knowledge with SDM approaches represents a key 
challenge for the future. Another approach might be to shift the focus of modeling from individual entities 
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to collective properties of biodiversity [16, 98], such as species assemblages or communities [12, 99, 100]. 
Although this does not fully circumvent the problem, it might be used to indicate where rare or 
threatened species are likely to be found in association with which other species [12].

Final remarks
We consider the following steps as vital to a further development of SDM within an applied conservation 
context in the tropics. First, to reinvigorate SDM applications, more emphasis should be given to 
mechanisms for improving data sharing and better structural integration of diverse data sources, using 
distributed databases with common standards, referential integrity, and rigorous quality control. Second, 
SDMs can be used for strengthening available data, as they provide useful tools for quality control. Finally, 
SDMs can play a role in prioritizing areas for field survey, by identifying knowledge gaps. While current 
ongoing initiatives have already implemented mechanisms and stressed the need for open, unrestricted 
access to data, information and knowledge related to the conservation of biodiversity (e.g., GBIF), none of 
them have yet considered the applied value of current modeling techniques to improve the applied value 
of such datasets. We strongly believe that SDMs have great potential to support the conservation of 
tropical biodiversity in the future, if their value in this context is recognized. 
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Appendix 1. Description of modeling methods and examples found in the literature review (references 
are provided in Appendix 3.

Method
Generalized linear models (GLM)
Statistical models including ordinary regression and analysis of variance. All GLMs have a 
random component (response variable), a systematic component (explanatory variables), and 
a link function that describes the relationship between the expected value of the response and 
the predictors. The most common form of GLM in predictive distribution modeling is logistic 
regression for presence-absence data. Many examples are found in the literature (e.g. Osborne 
et al. 2001; Bailey et al. 2002; Lennon et al. 2002; Anadón et al. 2007).

Generalized additive models (GAM)
GAMs are a non parametric extension of GLMs, in which the linear or polynomial functions are 
replaced by smoothed data-dependent functions. Examples included Araújo et al. (2005b), 
Heikkinen et al. (2006), García et al. (2007) and Luoto et al. (2005, 2007).

Other regression techniques (RT+)
Alternative regression-based models including multivariate adaptive regression splines (MARS, 
Elith and Leathwick 2007; Guisan et al. 2007), BRUTO (Guisan et al. 2007), generalized 
dissimilarity model of single species (GDMSS, Guisan et al. 2007), conditional fixed effects 
logistic regression (Johnson et al. 2004), autologistic regression (McPherson and Jetz 2007), 
generalized linear mixed models (GLMM, Muñoz and Real 2006; Rhodes et al. 2006), 
geographically weighted regression (GWR, Osborne et al. 2007), varying coefficient modeling
(VCM, Osborne et al. 2007), and Bayesian model averaging with logistic regression (Thomson 
et al. 2007).

Bioclimatic envelopes (BIOCLIM)
Include a variety of methods that use presence-only records to characterize sites that are 
located within the environmental hyper-space occupied by a species. BIOCLIM is a good 
example of a climate-mapping approach to modeling (Peterson et al. 2000; Loiselle et al. 2003; 
Téllez-Valdés and Dávila-Aranda 2003; Robertson et al. 2004; Tsoar et al. 2007), but other 
envelope-style methods are also in use (Yom-Tov and Kadmon 1998; Robertson et al. 2004; 
Wharton and Kriticos 2004) . 

Habitat suitability indices (HS)
Methods requiring presence-only data based on a comparison between the environmental 
niche of the species and the environmental characteristics of the entire study area. They 
include a variety of techniques including ecological niche factor analysis (ENFA, Engler et al.
2004; Martínez et al. 2006; Stockman et al. 2006; Guisan et al. 2007; Sérgio et al. 2007; Tsoar 
et al. 2007), DOMAIN (Loiselle et al. 2003; Manrique et al. 2003; Vargas et al. 2004; Guisan et 
al. 2007; Tsoar et al. 2007), the Mahalanobis distance (Rouget et al. 2004; Allouche et al. 2006; 
Tsoar et al. 2007), and other related methods (Beard et al. 1999; Polasky et al. 2000; 
Robertson et al. 2001; Miles et al. 2004; Estrada-Peña et al. 2005; Gavin and Hu 2005; Beck 
and Kitching 2007; Tsoar et al. 2007).
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Multivariate statistics (MS)
Includes a variety of multivariate statistical techniques applied to species distribution 
modeling, including canonical correspondence analysis (CCA, Gottfried et al. 1999; Jaberg and 
Guisan 2001), correspondence analysis (Wang et al. 2003), and discriminant analysis (Manel et 
al. 1999; Curnutt 2000; Tourenq et al. 2001; McPherson et al. 2004)

Machine learning methods (MLM)
Include classification tree analysis (CART, Thuiller et al. 2003; Foxcroft et al. 2004; Gavin and 
Hu 2005; Segurado et al. 2006; Bahn and McGill 2007; Usio 2007), artificial neural networks 
(Manel et al. 1999; Tourenq et al. 2001; Berry et al. 2002; Worner and Gevrey 2006), support 
vector machines (Drake et al. 2006), maximum entropy models (MAXENT, Graham and 
Hijmans 2006; Guisan et al. 2007; Sérgio et al. 2007; Pawar et al. 2007), and boosted 
regression trees (BRT, Guisan et al. 2007).

Genetic algorithms (GARP)
Genetic algorithms techniques that search iteratively for non-random correlations between 
species presence and absence and environmental parameter values using several different 
types of rules. Each rule type implements a different method for building species prediction 
models. The most widespread method in predictive species distribution modeling is the 
Genetic Algorithm for Rule-set Prediction (GARP). GARP implements four types of rules: 
atomic, logistic regression, bioclimatic envelope, and negated bioclimatic envelope rules. Some 
examples can be found in Anderson et al. (2002), Ortega-Huerta and Peterson (2004), Peterson 
et al. (2004), and García (2006). An alternative genetic algorithm technique is the Bayes-based 
genetic algorithm implemented by McClean et al. (2006).

Consensus techniques (BIOMOD)
This refers basically to the BIOMOD application developed by Thuiller [101], which 
incorporates four familiar modeling techniques to model species distributions: generalized 
linear models, generalized additive models, classification tree analysis, and artificial neural 
networks.

Expert knowledge-based methods (EK)
Comprise a variety of procedures based on qualitative information, subjective estimates, and 
expert judgement (Boshoff et al. 2001; Johnson and Guillingham 2004; Schulte et al. 2005).
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Appendix 2. Methodologies and approaches used in modeling species distribution in 123 articles published from 
January, 1995 to May, 2007, in Biological Conservation, Conservation Biology, Diversity and Distribution, Global 
Ecology and Biogeography and the Journal of Applied Ecology. Full references are provided in Appendix 3.

Reference Region Scope Verification Taxon Data1

Allouche et al. (2006) Israel Methodological Informal 
validation

Plants P

Anadón et al. (2007) Spain Species 
conservation

Same data Reptiles P-A

Anderson et al. (2002) Ecuador, 
Colombia, 
Venezuela

Biogeography Partitioning Mammals P

Araújo et al. (2005a) UK Climate change Partitioning Birds P

Araújo et al. (2005b) Europe Methodological Partitioning + 
Informal 
validation

Amphibians, 
Birds, 
Mammals, 
Plants, Reptiles

P

Arriaga et al. (2004) Mexico Biological 
invasions

Partitioning Plants P

Bahn & McGill (2007) USA, Canada Methodological Partitioning Birds Ab

Bailey et al. (2002) UK Species 
conservation

Informal 
validation

Birds, 
Invertebrates, 
Mammals, 
Plants

P-A

Beard et al. (1999) USA Methodological Partitioning Birds P-A

Beck & Kitching (2007) Malesia Methodological Non reported Invertebrates P

Berry et al. (2002) UK, Ireland Climate change Partitioning Amphibians, 
Invertebrates, 
Mammals, 
Plants

P-A

Bonaccorso et al. (2006) Brazil Biogeography Partitioning Birds, Plants P

Boshoff et al. (2001) South Africa Methodological Informal 
validation

Mammals P-A

Brotons et al. (2007) Spain Methodological Informal 
validation

Birds P, Ab

Brotons et al. (2005) France Species 
conservation

Non reported Birds P-A, Ab

Bulluck et al. (2006) USA Methodological Prospective 
sampling

Birds P

Buse et al. (2007) Germany Ecology Prospective 
sampling

Invertebrates P-A
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Reference Region Scope Verification Taxon Data1

Carroll et al. (2003) USA Species 
conservation

Non reported Mammals P

Cassinello et al. (2006) Spain Biological 
invasions

Prospective 
sampling

Mammals P

Castellarini et al. (2007) France Conservation 
priorization

Partitioning Invertebrates P-A

Chefaoui et al. (2005) Spain Species 
conservation

Non reported Invertebrates P

Chu et al. (2005) Canada Climate change Partitioning Fishes P-A

Collingham et al. (2000) UK Methodological Partitioning Plants P

Cooper (2002) USA Ecology Non reported Birds P-A

Cowley et al. (2000) UK Species 
conservation

Partitioning Invertebrates P-A

Curnutt (2000) USA, Australia Biological 
invasions

Partitioning Plants P

Dennis et al. (2002) France Methodological Non reported Invertebrates P-A

Domínguez-Domínguez et al. 
(2006)

Mexico Species 
conservation

Partitioning Fishes P

Drake et al. (2006) Switzerland Methodological Partitioning Plants P

Elith & Leathwick (2007) Australia, 
Canada, New 
Zealand, 
Switzerland, 
South America

Methodological Prospective 
sampling

Birds, 
Mammals, 
Plants, Reptiles

P

Engler et al. (2004) Switzerland Methodological Partitioning + 
Prospective 
sampling

Plants P

Estrada-Peña et al. (2005) The Americas Climate change Partitioning Invertebrates P

Feria & Peterson (2002) Mexico Methodological Partitioning Birds P

Ficetola & De Bernardi (2004) Italy Species 
conservation

Partitioning Amphibians P-A

Fitzpatrick et al. (2007) South America, 
USA

Biological 
invasions

Partitioning Invertebrates P
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Reference Region Scope Verification Taxon Data1

Fleishman et al. (2003) USA Methodological Prospective 
sampling

Invertebrates P-A

Foxcroft et al. (2004) South Africa Biological 
invasions

Same data Plants P-A

García (2006) Mexico Biodiversity 
mapping

Non reported Amphibians, 
Reptiles

P

García et al. (2007) Spain Species 
conservation

Partitioning Birds P-A, Ab

Gavin & Hu (2005) USA, Canada Methodological Partitioning Plants P-A

Germaine & Wakeling (2001) USA Ecology Non reported Reptiles P-A

Gibson et al. (2004) Australia Species 
conservation

Same data Birds P-A

Gottfried et al. (1999) Austria Climate change Non reported Plants P-A

Graham & Hijmans (2006) USA Methodological Partitioning Amphibians, 
Reptiles

P

Greaves et al. (2006) UK Methodological Partitioning Mammals P-A

Grundel & Pavlovic (2007) USA Species 
conservation

Non reported Invertebrates P-A

Guisan et al. (2005) Switzerland Methodological Prospective 
sampling

Plants P

Guisan et al. (2007) Australia, 
Canada, New 
Zealand, 
Switzerland and 
South America

Methodological Prospective 
sampling

Birds, 
Mammals, 
Plants, Reptiles

P

Heikkinen et al. (2006) Finland Methodological Same data Birds P-A

Jaberg & Guisan (2001) Switzerland Species 
conservation

Partitioning Mammals P-A

Jarvis & Robertson (1999) Namibia Species 
conservation

Non reported Birds P-A, Ab

Jeganathan et al. (2004) India Species 
conservation

Same data Birds P-A

Johnson & Guillingham (2004) Canada Methodological Non reported Birds, Mammals ?

Johnson et al. (2004) Canada Methodological Partitioning Mammals P
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Reference Region Scope Verification Taxon Data1

Lennon et al. (2002) USA Biogeography Non reported Plants P-A

Lira-Noriega (2007) Mexico Methodological Partitioning Birds P

Lobo et al. (2006) Iberian 
Peninsula

Ecology Same data Invertebrates P

Loiselle et al. (2003) Brazil Methodological Informal 
validation

Birds P

Luoto et al. (2005) Finland Methodological Partitioning Invertebrates P

Luoto et al. (2007) Finland Methodological Partitioning Birds P-A

Lütolf et al. (2006) Switzerland Methodological Prospective 
sampling

Invertebrates P

Manel et al. (1999) India Methodological Prospective 
sampling

Birds P-A

Manel et al. (2001) India Methodological Prospective 
sampling

Invertebrates P-A

Manrique et al. (2003) Mexico, Belice, 
Guatemala

Biogeography Informal 
validation

Plants P

Martínez et al. (2006) Spain Conservation 
priorization

Partitioning Lichens P

Martínez-Meyer et al. (2004) USA Biogeography Same data Mammals P

McClean et al. (2006) Africa Climate change Same data Plants P

McPherson & Jetz (2007) Southern-
Eastern Africa

Methodological Non reported Birds P-A

McPherson et al. (2004) South Africa, 
Lesotho and 
Swaziland

Methodological Partitioning Birds P

Midgley et al. (2006) South Africa Methodological Partitioning Plants P-A

Miles et al. (2004) Brazil, Bolivia, 
Colombia, 
Ecuador, Peru

Climate change Non reported Plants P-A, P

Milsom et al. (2000) UK Species 
conservation

Non reported Birds P-A

Muñoz & Real (2006) Spain Biological 
invasions

Same data Birds P-A

Muñoz et al. (2005) Spain Species 
conservation

Non reported Birds P-A
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Reference Region Scope Verification Taxon Data1

Ortega-Huerta (2007) Mexico Conservation 
priorization

Non reported Birds, Mammals P

Ortega-Huerta & Peterson 
(2004)

Mexico Conservation 
priorization

Same data + 
Partitioning

Birds P

Osborne et al. (2001) Spain Species 
conservation

Partitioning Birds P

Osborne et al. (2007) Spain, UK Methodological Same data Birds P-A

Palma et al. (1999) Portugal Species 
conservation

Same data Mammals P

Pawar et al. (2007) India Conservation 
priorization

Same data Amphibians, 
Reptiles

P

Pearce et al. (2001) Australia Methodological Same data Birds, Reptiles, 
Mammals

P-A

Pearce & Ferrier (2001) Australia Methodological Prospective 
sampling

Birds, 
Mammals, 
Plants, Reptiles

P-A, Ab

Peterson et al. (2000) Mexico Conservation 
priorization

Partitioning Birds, Mammals P

Peterson et al. (2004) USA, Mexico Methodological Non reported Birds P

Polasky et al. (2000) USA Methodological Non reported Amphibians, 
Birds, 
Mammals, 
Reptiles

P-A

Reino et al. (2006) Portugal Ecology Same data Birds P-A

Rhodes et al. (2006) Australia Species 
conservation

Same data Mammals P-A

Robertson et al. (2001) South Africa, 
Lesotho, 
Swaziland

Methodological Partitioning Plants P

Robertson et al. (2004) South Africa, 
Lesotho, 
Swaziland

Methodological Partitioning Plants P

Robinson et al. (2001) UK Species 
conservation

Non reported Birds P-A

Roger et al. (2007) Australia Species 
conservation

Same data Mammals P-A
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Reference Region Scope Verification Taxon Data1

Rouget et al. (2004) South Africa, 
Lesotho, 
Swaziland

Biological 
invasions

Same data Plants P

Russell & Clout (2004) New Zealand Biological 
invasions

Non reported Mammals P-A

Sánchez-Cordero et al. (2005) Mexico Species 
conservation

Partitioning Mammals P

Schmidt et al. (2005) Burkina Faso Biodiversity 
mapping

Non reported Plants P

Schulte et al. (2005) USA Species 
conservation

Informal 
validation

Birds P

Schussman et al. (2006) USA Biological 
invasions

Partitioning Plants P

Segurado et al. (2006) Iberian 
Peninsula

Methodological Same data Reptiles P-A

Seoane et al. (2005) Spain Methodological Same data + 
Prospective 
sampling

Birds P-A

Sérgio et al. (2007) Portugal Species 
conservation

Informal 
validation

Bryophytes P

Silva et al. (2002) Portugal Methodological Partitioning Birds P-A

Stockman et al. (2006) USA Methodological Prospective 
sampling

Invertebrates P

Suárez-Seoane et al. (2002) Spain Methodological Partitioning Birds P-A

Téllez-Valdés & Davila-Aranda 
(2003)

Mexico Climate change Non reported Plants P

Thomson et al. (2007) Australia Species 
conservation

Prospective 
sampling

Birds P-A

Thuiller et al. (2003) Spain Ecology Partitioning Plants P-A

Thuiller et al. (2005) Europe Climate change Same data Plants P

Thuiller et al. (2006) Europe Climate change Partitioning Plants P

Tourenq et al. (2001) France Biological 
invasions

Partitioning Birds P-A

Travaini et al. (2007) Argentine Methodological Partitioning Mammals P-A
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Reference Region Scope Verification Taxon Data1

Tsoar et al. (2007) Israel Methodological Prospective 
sampling

Birds, 
Invertebrates, 
Mammals

P

Underwood et al. (2004) USA Biological 
invasions

Partitioning Plants P-A

Usio (2007) Japan Species 
conservation

Same data Invertebrates P-A

Vanreusel et al. (2007) Belgium Species 
conservation

Partitioning + 
Prospective 
sampling

Invertebrates P-A

Vargas et al. (2004) Ecuador Species 
conservation

Informal 
validation

Plants P

Wang et al. (2003) Mexico Ecology Non reported Mammals P-A

Weaver et al. (2006) USA Biogeography Partitioning Invertebrates P

Wharton & Kriticos (2004) Australia Biological 
invasions

Non reported Invertebrates P-A

Wheatley et al. (2005) Canada Species 
conservation

Non reported Mammals P-A, Ab

White & Kerr (2007) Canada Biodiversity 
mapping

Non reported Invertebrates P

Wilson et al. (2005) Australia Methodological Non reported Plants P-A

Worner & Gevrey (2006) World Biological 
invasions

Non reported Invertebrates P-A

Yom-Tov & Kadmon (1998) Israel Species 
conservation

Non reported Mammals P

1 P, Presence-only data; P-A, Presence-absence data; Ab, Abundance data; ?, No information given.
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