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Abstract  
The restoration of anthropogenically disturbed sites contributes to biodiversity conservation, but pre-recovery land-use history 
affects the restoration and recovery time of impacted forest sites.  The objective of the present study was to assess the effects of 
different land-use histories (low-impact logging - LL, high-impact logging – HL, and slash-and-burn - SB) on quantitative (diversity 
values) and qualitative (floristic composition) measures of forest recovery. This research was conducted in Atlantic rainforest areas 
of Bahia State, Brazil, which had remained undisturbed for 50 to 60 years after human disturbance. Surprisingly, the area subjected 
to the most aggressive usage (SB) showed intermediate richness and diversity values, but had a floristic composition dominated by 
pioneer species similar to early-successional forests. Families typical of preserved areas (Sapotaceae and Myrtaceae) were more 
diverse in LL and HL areas. Our results indicate both quantitative and qualitative recovery in areas subjected to LL, which tended to 
recover without intervention. Areas subjected to HL showed intermediate qualitative recovery and the lowest quantitative recovery, 
and may therefore require enrichment to accelerate recovery. Despite good quantitative (species richness and diversity) recovery, 
the slash-and-burn areas had a predominance of early successional species, which indicates that enrichment actions are essential 
for the recovery of these forest areas. Knowledge of how land-use history influences forest restoration processes can guide 
management actions and thereby contribute to the allocation of resources where they are really needed.  
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Resumo 
A recuperação de áreas antropizadas contribui para a conservação da biodiversidade. O histórico de uso interfere na restauração e 
no tempo de recuperação das florestas. O objetivo deste estudo foi investigar o reflexo de diferentes históricos de uso (corte 
seletivo leve - LL, corte seletivo intenso - HL e corte e queima - SB) na recuperação quantitativa (valores de diversidade) e qualitativa 
(composição florística) de áreas de florestas secundárias. A pesquisa foi realizada em ares de floresta atlântica na Bahia/Brasil, 
abandonadas entre 50 e 60 anos após distúrbio. Diferente do esperado, a área com histórico mais agressivo (SB), apresentou valores 
de riqueza e diversidade (H’) intermediários, mas com composição florística mais similar a florestas em início de sucessão, com 
predomínio de pioneiras. Já as famílias Sapotaceae e Myrtaceae, características de áreas conservadas, foram mais diversas nas áreas 
de LL e HL. Nossos resultados indicam que áreas de corte seletivo leve têm melhor recuperação, tanto em termos quantitativos 
quanto qualitativos, tendendo a se recuperar sem intervenção. Áreas de corte seletivo intenso apresentaram recuperação 
qualitativa intermediária e quantitativa mais baixa, podendo necessitar de enriquecimento para acelerar sua recuperação. Já áreas 
de corte e queima, apesar da boa recuperação quantitativa (riqueza e diversidade), tiveram predomínio de espécies de início de 
sucessão, indicando que ações de enriquecimento são fundamentais nessas áreas. O conhecimento da influência do histórico de uso 
no processo de restauração das florestas pode direcionar ações de manejo, permitindo direcionar recursos onde eles são realmente 
necessários.  
 
Palavras chave: Corte e queima; Corte seletivo; Floresta secundária 
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Introduction 
Tropical rainforests are a priority for biodiversity conservation actions due to the current levels 
of threat, diversity and endemism [1]. Despite the importance of forests, deforestation is 
increasing with the expansion of agricultural activities and commercial logging [2]. The Brazilian 
Atlantic rainforest stands out among tropical rainforests due to its high level of species richness 
and endemism [1-5]. With only 11-16% of the Atlantic rainforest remaining in Brazil, the quality 
of the habitat within the remaining areas is a concern, particularly as 32-40% of remnants are 
small fragments and areas of secondary forest [6]. Most of these remaining secondary forests 
are located in areas of abandoned agriculture and pasture and are currently undergoing 
regeneration [7, 8]. The protection and restoration of secondary forests would therefore be a 
way to mitigate the loss of forest cover and biodiversity [9, 10], especially in very disturbed 
landscapes [11]. This is considered one of the major actions that can benefit the conservation 
of tropical biodiversity [12].  
 
Forest restoration can be influenced by land-use history, such as the type and intensity of 
disturbance [13-15]. Several types of land-use history (agriculture, agroforestry, pasture and 
crops) lead to severe biodiversity losses, except for light selective logging, which is capable of 
maintaining biodiversity values similar to mature forest [12]. In fact, light logging is considered 
a less aggressive disturbance than other land uses, as it is capable of maintaining diversity [12], 
although it may cause changes in composition [16, 17]. Treefall caused by selective logging 
creates open areas that modify forest conditions (e.g. climate) and favors the development of 
pioneer species, hence altering floristic composition and ecological interactions [16-21]. In 
contrast, the disturbance generated by the slash-and-burn technique is more aggressive 
because the use of fire and the subsequent establishment of crops alter the seed bank and 
seed rain [22, 23], soil characteristics [15, 24-27], and plant sprouting regeneration and growth 
rates [14, 28, 29].  

The regeneration of degraded areas can be assessed through measures that show the recovery 
of features such as richness, diversity and floristic composition [12, 30]. In general, the more 
advanced the recovery stage, the greater its richness and diversity [31-34]. During forest 
recovery, changes occur in the floristic composition, with a turnover of the most frequent and 
richest families, as well as the most abundant species [33-36].  Furthermore, there is also a 
reduction in the relative dominance wherein few species, often the pioneering ones typical of 
environments with a high incidence of light, are replaced by species typical of later 
successional stages that are more frequently encountered in shaded environments [34, 37]. Yet 
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it is not always possible to recover the richness, diversity and floristic composition, as the land-
use history can make these changes irreversible [38, 39]. The impossibility of recovering some 
forest characteristics may occur by the “secondarization” process, wherein areas maintain the 
characteristics of secondary forests even after many years of recovery [40]. This process has 
occurred in Atlantic rainforest areas of northeastern Brazil, where there is a highly aggressive 
land-use history [41, 42]. Studies have also shown that it is more difficult to recover areas 
subjected to high land-use intensity without outside intervention, compared with less 
disturbed areas and areas near to continuous forests [34, 43-46].  

The objective of this study was to investigate the effects of different land-use histories on the 
restoration process of Atlantic rainforest areas during the same period, in a private nature 
reserve in southern Bahia, Brazil. Specifically, our research aimed to answer the following 
questions: 1) Is there any difference in the floristic composition of disturbed forest areas with 
the same recovery time, but under different intensities and distinct types of anthropogenic 
disturbance? 2) Do diversity and richness values differ among areas with the same recovery 
time but different land-use histories? 3) Under which kind of land-use history does the 
regeneration process occur faster? The initial working hypothesis was that different types and 
intensities of land use could have influenced the composition, diversity and regeneration 
process of forests. Although we expected that the highest impact and most intense 
anthropogenic land-use would be responsible for the greatest changes in forest characteristics, 
our results indicate that the richness and diversity of regenerating forest areas do not always 
correspond to the intensity of disturbance.  

Methods 
The study took place at the Michelin Ecological Reserve (“Reserva Ecológica Michelin” -  REM), 
located in the municipality of Igrapiúna, Bahia, Brazil (13° 50'S, 39° 10'W), 18 km from the 
Atlantic Coast  (Fig. 1). The reserve is a 3096 ha area surrounded by diverse agroforestry 
systems and forest fragments (most are <30 ha and a few are > 500 ha). The REM is formed by 
a mosaic of different forest successional stages that have suffered anthropogenic disturbances 
for hundreds of years, including slash-and-burn, palm heart (Euterpe edulis Mart.) extraction, 
hunting, and clearing for agriculture [47, 48]. This mosaic is located on a variegated landscape, 
where the native vegetation still forms the matrix but has been modified in a variety of ways 
[49]. It is a common landscape in southern Bahia and has suffered several levels of disturbance 
over the years [50,51]. In general, the most disturbed areas are located near rivers where 
adjacent vegetation was repeatedly cleared for agriculture over the past centuries. The most 
intact forests are found on areas that are difficult to access, where remnants with old-growth 
trees indicate that clear-cutting did not take place during the 20th century [47]. The forest is a 
lowland evergreen rainforest and the study area has an annual average temperature of 24.8°C 
and average annual rainfall of 1800-2000 mm (climatic data from Michelin’s meteorological 
station located at the REM).  
 
The surveys were planned to sample areas that suffered different types of human disturbance 
and had recovered (i.e. remained undisturbed) for the same amount of time. Here we refer to 
all the disturbed study areas which suffered recent alteration as secondary forest.  To sample 
the different land-use histories, the choice of possible areas was based on information from 
aerial images (1964 and 1974), evidence of flour mills, and information obtained from 
interviews with local residents [47]. We distinguished three main types of land-use histories: 
slash-and-burn agriculture (SB), mostly for manioc cultivation as a subsistence activity; high-
impact logging (HL), where all medium- and large-sized  trees were cut for timber (the timber 
was logged with axes, dragged by bullocks and carried to the mill); low-impact logging (LL), 
where only the largest trees were removed (logging was more specific, focused on high-value 
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timber, due to the difficulty of access). None of the sites had undergone significant 
disturbances during the last 50-60 years (Fig. 1).  
 
In each land-use site, three transects of 200 m were randomly established and the point-
quadrant sampling method was applied within these transects [52], with a central point at 
every 15 m. Within each quadrant, all individuals with a diameter at breast height (DBH) ≥10 
cm were sampled. Branches from all individuals were collected for taxonomic identification (in 
accordance with APG II [53]), using identified material from the herbarium of the Center for 
Cacao Research as a reference.  
 
In order to compare the recovery in the three land-use history sites we used Shannon diversity 
(H'), Pielou’s equitability (J) and Jaccard’s index (JI). Estimates of the relative frequency (RF), 
relative density (RD) and relative dominance (RDo), were calculated following Martins [54]. 
 
 

 
 
Fig. 1 (a) Location of Michelin Ecological Reserve, Bahia, Brazil (13°50´S, 39°10´W). The reserve area is conspicuous in red; 
fragments bigger than 1 ha are in blue. Pictures of recovered areas after (b) low-impact logging (LL), where bigger trees are 
more frequent; (c) high-impact logging (HL), where cut trunks are frequent (here indicated by an arrow) and (d) slash and burn 
(SB), where the density of thin trees is high. 
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Results 
Species richness, diversity and floristic composition differed between sites with the same 
recovery time and different land-use histories. There were also differences between the most 
dominant families and species recorded in the different areas. Areas with a history of slash-
and-burn agriculture (SB), here considered as the most aggressive disturbance, showed 
intermediate richness, diversity and evenness values in relation to the other land-use histories 
(Table 1). In areas that suffered SB disturbance, 77 species and 38 families were recorded, most 
notably Fabaceae, with the largest number of species (10) and individuals (20; Appendix 1). 
The area with a history of high-impact logging subject to intermediate disturbance had the 
lowest richness, diversity and evenness values amongst the three land-use histories (Table 1). 
Its tree community structure comprised 75 species from 32 families, especially Sapotaceae, 
which was the richest family (nine species), and Clusiaceae, with the highest abundance (21 
individuals). The highest values of richness, diversity and evenness were found in the area with 
a history of low-impact logging, the disturbance considered as least aggressive. In this area we 
recorded 93 tree species from 35 families, mainly Myrtaceae, with 12 species and 16 
individuals (Table 1; Appendix 1).  

 
 

Table 1. Parameters of richness and diversity of different land-use histories in 
secondary forests at the Michelin Ecological Reserve, Bahia, Brazil. Number 
of species (SP) and families (Fam.); Shannon diversity index (H') in nats/ind.; 
Pielou’s evenness index (J). Land-use: SB - slash and burn for agriculture; HL 
– high-impact logging; LL - low-impact logging 

 

 
 
 
 
 
 
 
 
 
 
In the SB area, the most dominant and frequently recorded species were Pourouma velutina, 
Vochysia acuminata and Helicostylis tomentosa (Table 2). Together, these species accounted for 
18% of individuals and 54% of the relative dominance in the slash-and-burn (SB) area. In the HL 
area, the three most representative species accounted for 24% of individuals and 50% of the 
relative dominance: H. tomentosa, Pogonophora schomburgkiana and Tovomita choisyana. In 
LL, Virola officinalis, H. tomentosa and Macrolobium latifolium were the most common, 
representing 14% of individuals and 36% of the relative dominance in the area (Table 2). 

Floristic similarity was higher in the areas that suffered the same type of disturbance, i.e., in 
lightly and heavily logged areas (JI = 18.3%). The similarity index between SB and HL areas was 
13.7%, whereas that of LL was 11.8%. Only 6% of species occurred in all three areas (Appendix 
1). Singletons (species represented by only one individual) were more frequent in the area 
subject to low-impact logging (26% of individuals and 43% of species) than in those subjected 
to high-impact logging (18% of individuals and 38% of species) or slash-and-burn (18% of 
individuals and 36% of species). 

 
Table 2. Composition of the most representative species in different land-use histories at the Michelin 
Ecological Reserve, Bahia, Brazil. Species were sorted, in each disturbance history, according to the 

  SP Fam.  H' J 

SB  77 38  4.1 0.93 

HL  75 32  3.9 0.90 

LL  93 35  4.3 0.95 
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relative dominance (RDo) and their respective density (RD) and relative frequency values (RF). Land-use 

history: SB – slash and burn for agriculture; HL – high-impact logging; LL - low-impact logging 
 

ESPÉCIES 

SB HL LL 

RDo 

(%) 

RD 

(%) 

RF 

(%) 

RDo 

(%) 

RD 

(%) 

RF 

(%) 

RDo 

(%) 

RD 

(%) 

FR 

(%) 

          

Pourouma velutina 21.01 5.1 5.0 0.12 0.6 0.7 - - - 

Vochysia acuminata 20.98 4.5 3.6 - - - - - - 

Helicostylis tomentosa 11.78 8.3 7.2 22.65 9.0 9.3 14.01 7.1 6.8 

Pogonophora schomburgkiana 0.05 0.6 0.7 16.39 7.0 5.7 1.74 3.2 2.0 

Tovomita choisyana - - - 11.21 7.7 6.4 0.04 0.6 0.7 

Virola officinalis - - - 7.14 3.8 3.6 14.05 4.5 4.8 

Macrolobium latifolium - - - 0.66 0.6 0.7 8.48 2.6 2.7 

          

 

Discussion 
Our initial hypothesis that different types and intensities of land-use history would influence 
the regeneration process was confirmed. Disturbance history influenced the richness, diversity 
and the floristic composition of the disturbed forest studied. 
 
Among the disturbance histories, the area in recovery after low-impact logging (LL) showed the 
highest richness and diversity, indicating that this was the disturbance that allowed the fastest 
recovery. These results are in line with those of previous studies that show selective logging is 
the least damaging disturbance, which is capable of maintaining or even increasing diversity in 
relation to mature tropical forests [12, 17, 45, 55]. On the other hand, the area subjected to 
high-impact logging showed the lowest richness and diversity, suggesting that the higher the 
intensity of exploitation, the longer the time required for the recovery of this forest's 
characteristics. Indeed, a higher intensity of selective logging results in fewer remnant 
individuals and species, and greater disturbance of forest characteristics, such as forest cover, 
which may delay recovery [56]. The recovery of species richness takes longer in areas subjected 
to more intensive land-use due to a reduction in the regeneration potential of the seed bank 
[44], as well as a reduction in the richness and abundance of seedlings, which increases 
recruitment time-lags [14, 57]. Additionally, other studies in the Atlantic Forest of northeastern 
Brazil showed that areas subjected to a very aggressive land-use history (decades of sugar cane 
monoculture) are suffering from a secondarization process, which makes recovery even more 
difficult [41, 42].  
 
The richness and diversity values found in the slash-and-burn area (SB) were similar to the 
high-impact logging site (HL). This similarity may be related to the recovery period (about 60 
years), which seems long enough for these parameters to reach similar values in areas with 
different disturbances. In fact, studies show that slash-and-burn areas only present low 
richness in the early years (5-20 years), but after 40-60 years of recovery, these forests present 
values that are similar to and maybe even greater than those of less disturbed tropical forests 
[14, 35, 45 , 58, 59]. It is possible that during this recovery period, the forest may be in a 
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transition stage where high richness values are common due to the co-existence of species 
from different regeneration niches (early and late successional species), which has been 
observed in other tropical forests [35, 58, 59].  
 
The highest species dominances were found in SB and HL, where few species (just three) 
accounted for around 50% of the relative dominance. In fact, studies in tropical forests indicate 
that the greatest species dominance is found in areas of an early successional stage [32, 34]. 
The reduction of dominance with the recovery of the forest may be explained by the 
population decline of a few pioneer species, which are replaced by several species from later 
successional stages [37, 60]. Likewise, it has been shown that a high dominance of pioneer 
species   at the start of forest succession may hinder the establishment of other species and 
prevent the increase of richness and diversity [14, 57]. So, the observed dominance suggests 
that the SB and HL histories are at an earlier stage, presenting lower richness and diversity than 
the area with a LL history.    
 
Floristic similarity was low among the different land-use histories, with higher values in the 
areas subjected to the same type of disturbance i.e. selective logging at different intensities (HL 
and LL). Low levels of similarity are common in areas with different land-use history subject to 
the same recovery interval [60] and can occur even when species richness and diversity values 
are similar [see 44]. This indicates that the type of use seems to cause greater floristic 
distinction than the intensity of use. As well as the different use histories, the low similarity 
values found may also have resulted from the presence of rare species in the study area, which 
is considered normal for tropical forests [32, 36, 37, 61]. The high frequency of rare or exclusive 
species that are recorded just once reduces the similarity among the areas and even among 
samples in the same area. Alternatively, the number of rare species may be an artifact of the 
sample size, which may have contributed to the low similarity of our study areas. 
 
On the one hand, it was difficult to distinguish quantitatively (in terms of richness, diversity, 
dominance and similarity) regeneration in the three areas with different land-use histories; on 
the other hand, these areas were observed to be very different in qualitative terms (families 
and species composition). Fabaceae was the richest and the most abundant family across the 
three land-use histories, but its species differed among the histories. The pioneer species 
typical of this family (Inga edulis; I. subnuda; I. thibaudiana; I. laurina; Senna multijuga; Balizia 
pedicillaris) were more representative in the area subjected to slash-and-burn (SB), followed by 
HL and LL. In fact, Fabaceae is the richest and most common family in Atlantic rainforest areas 
[62-65], even in different stages of regeneration [35]. Another important family for 
understanding the forest regeneration process in the studied area was Melastomataceae, 
which showed a high diversity in SB (four species), but was among the least diverse families in 
HL and LL (one species in each land-use history). This family is typical of tropical forests in 
early-successional stages [66]. It is well known that the importance and representativeness of 
this family decrease with the recovery of forests [31, 34]. In the studied area, families typical of 
less disturbed forest environments, like Myrtaceae and Sapotaceae, showed a reduced 
diversity in the LL site compared to that found in HL and SB areas. These families show a higher 
diversity in old-growth forests [31, 34, 57, 59, 65, 66]. The Myrtaceae family can even be 
considered as a possible indicator of well-preserved Atlantic rainforest areas [31]. The species 
abundance and richness patterns in these families suggest that after 50-60 years of 
regeneration, LL areas might have a floristic composition similar to that of primary forests, 
whereas HL areas have an intermediate composition and SB areas resemble early-successional 
forest stages.  
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Generally speaking, our study showed that the type and intensity of land-use influenced the 
speed of the regeneration process. This influence is more evident in qualitative aspects 
(floristic composition) than in quantitative ones (richness, diversity, dominance and similarity). 
In light of these qualitative changes, areas subjected to selective logging, regardless of the 
intensity, appear to be in a more advanced stage of recovery than the area subjected to slash-
and-burn. This was also recorded in African tropical forests, when areas that suffered slash-
and-burn were compared to those subjected to selective logging [45]. The differences found in 
our study area may be a reflection of the beginning of the regeneration process of each land-
use history. The recovery of slash-and-burn areas is more dependent on external propagules, 
while selective logging areas experience a greater in loco contribution, thus accelerating the 
regeneration process [44; 67]. Our results also suggest that, in quantitative terms, the more 
disturbed areas (slash-and-burn) may recover in a 60 year period. The high recovery potential 
of the studied area is favored by the variegated landscape. This recovery has not been 
observed in other Atlantic rainforest areas of northeastern Brazil that undergo the 
secondarization process, where the fragments are more isolated. 
 

Implications for conservation 
In light of the worldwide concern with biodiversity conservation in tropical forests, it is 
essential to preserve and recover secondary areas that form many of the forest remnants [6]. 
Many of these forests have been abandoned after some anthropic activity and are 
experiencing a recovery process [51, 55, 60, 68]. Slash-and-burn and selective logging are the 
major human activities in such areas [8, 10, 69]. Our results revealed that not only the type of 
land-use history (slash-and-burn and selective logging) but also its intensity may influence the 
forest successional process. 
 
Although our study focused on dbh> 10 cm and some late successional species with narrower 
diameters may have been in the understory, it is not common to find such species in more 
disturbed areas, and this was seen during the two-year period of field activities. The fact that 
we did not sample a narrower dbh may limit the inference possible from our results, but even 
taking into consideration this possibility, our results clearly indicate differences among the 
distinct land-use histories. Areas with a history of low-impact logging tended to recover even 
without intervention, just by protecting the area, especially in a variegated landscape. After 50-
60 years of recovery, these areas have already presented characteristics typical of a mature 
forest, such as a high frequency and diversity of late-successional families (e.g. Myrtaceae and 
Sapotaceae). In contrast, areas with a history of high-impact logging (HL) and slash-and-burn 
(SB) may not be able to spontaneously recover late successional species and some functional 
groups, which makes restoration process more difficult [21, 70, 71]. Our results indicate that 
enrichment actions may be necessary to accelerate forest recovery, especially in SB areas. 
Enrichment actions should also prioritize the most exploited species that are scarce in the 
region. These species are generally late successional species whose propagules are less 
common in early successional areas [72]. Such actions may assist in the recovery of ecological 
processes such as nutrient cycling, biotic pollination and dispersal, which may have been 
corrupted by previous land-use [21, 44]. The fact that a relatively minor intervention is 
necessary in areas where forest cover is already established significantly reduces restoration 
costs, as it reduces the need for planting seedlings and weeding, which represent high costs 
during the restoration process [73, 74]. Knowledge about the influence of land-use history on 
the succession of secondary forests can improve the utilization of the restoration potential of 
these forests, directing appropriate management actions where they are most needed.  
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Appendix 1. List of species that occur in different areas of land-use history (slash-and-burn - SB, 
high-impact logging - HL; low-impact logging - LL) at the Michelin Ecological Reserve, Bahia 
state, Brazil. 
 

FAMILY / SPECIES SB HL LL Total 

Achariaceae     

Carpotroche brasiliensis (Raddi) Endl. 5 1 0 6 

Anacardiaceae     

Tapirira guianensis Aubl. 5 0 0 5 

Annonaceae     

Anaxagorea dolichocarpa Sprague & Sandwith 0 1 0 1 

Guatteria blanchetiana R.E. Fries 0 0 2 2 

Guatteria oligocarpa Mart. 1 0 0 1 

Pseudoxandra bahiensis Maas 0 0 1 1 

Xylopia ochrantha Mart. 1 0 0 1 

Xylopia sp1 2 1 0 3 

Xylopia sp2 1 1 0 2 

Apocynaceae     

Anartia olivacea (Müll.Arg.) Markgr. 1 4 2 7 

Himatanthus bracteatus (A.DC.) Woodson 1 3 0 4 

Lacmellea bahiensis J.F.Morales 1 1 1 3 

Araliaceae     

Schefflera morototoni (Aubl.) Maguire et al. 2 0 0 2 

Asteraceae     

Vernonia diffusa Less. 1 0 2 3 

Bignoniaceae     

Bignoniaceae sp1 0 1 0 1 

Bignoniaceae sp2 0 0 1 1 

Tabebuia cassinoides (Lam.) DC. 0 0 1 1 

Boraginaceae     

Boraginaceae sp1 2 0 0 2 

Boraginaceae sp2 0 1 0 1 

Cordia ecalyculata Vell. 2 3 0 5 

Cordia sp. 1 0 0 1 

Burseraceae     

Burseraceae sp. 0 0 3 3 

Protium warmingianum Marchand 0 1 1 2 

Protium aracouchini (Aubl.) Marchand 0 0 1 1 
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FAMILY / SPECIES SB HL LL Total 

Protium heptaphyllum (Aubl.) Marchand 0 0 1 1 

Protium icicariba var. talmonii Daly 0 0 1 1 

Tetragastris catuaba Soares da Cunha 0 1 1 2 

Caricaceae     

Jacaratia heptaphylla (Vell.) A.DC. 0 1 0 1 

Celastraceae     

Maytenus sp. 1 0 0 1 

Chrysobalanaceae     

Chrysobalanaceae sp. 0 1 0 1 

Couepia belemii Prance 0 0 1 1 

Licania belemii Prance 0 0 1 1 

Licania hypoleuca Benth. 0 0 1 1 

Licania salzmannii (Hook.f.) Fritsch 0 0 1 1 

Clethraceae     

Clehtra sp. 3 0 0 3 

Clusiaceae     

Garcinia macrophylla Mart. 0 7 1 8 

Symphonia globulifera L.f. 2 1 1 4 

Tovomita choisyana Planch. & Triana 1 12 1 14 

Tovomita mangle G. Mariz 0 1 1 2 

Cunoniaceae     

Lamanonia sp. 0 0 3 3 

Dichapetalaceae     

Stephanopodium blanchetianum Baill. 1 0 0 1 

Elaeocarpaceae     

Sloanea garckeana K.Schum. 0 1 1 2 

Sloanea monosperma Vell. 0 0 3 3 

Sloanea usurpatrix Sprague & L.Riley. 0 2 0 2 

Erythroxilaceae     

Erythroxylum cuspidifolium Mart. 0 0 1 1 

Euphorbiaceae     

Actinostemon sp1 0 1 0 1 

Aparisthmium cordatum (A.Juss.) Baill. 2 0 0 2 

Bernardia sp. 0 0 1 1 

Euphorbiaceae sp. 0 0 1 1 

Mabea piriri Aubl. 1 2 2 5 

Maprounea guianensis Aubl. 5 0 0 5 
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FAMILY / SPECIES SB HL LL Total 

Fabaceae     

Albizia pedicellaris (DC.) L.Rico 1 0 0 1 

Andira anthelmia (Vell.) Benth. 1 0 0 1 

Balizia pedicellaris (DC.) Barneby & Grimes 1 0 0 1 

Chamaecrista ensiformis (Vell.) H.S.Irwin & Barneby 0 3 0 3 

Fabaceae sp. 0 0 1 1 

Inga edulis Mart. 3 1 0 4 

Inga laurina (SW.) Wild. 0 2 1 3 

Inga subnuda Salzm. ex Benth. 5 0 0 5 

Inga thibaudiana DC. 2 0 0 2 

Macrolobium latifolium Vogel 0 1 4 5 

Parkia pendula (Willd.) Benth. ex Walp. 2 0 1 3 

Peltogyne angustiflora Ducke 0 0 1 1 

Pterocarpus rohrii Vahl 0 0 2 2 

Senna multijuga (Rich.) H.S.Irwin & Barneby 1 0 0 1 

Swartzia riedelii R.S.Cowan 2 0 0 2 

Swartzia flaemingii Raddi 0 1 2 3 

Swartzia simplex (Sw.) Spreng. 0 0 2 2 

Swartzia sp. 0 2 0 2 

Tachigali densiflora (Benth.) L.G.Silva & H.C.Lima 0 1 0 1 

Tachigali sp. 2 0 0 2 

Vataireopsis araroba (Aguiar) Ducke 0 0 1 1 

Icacinaceae     

Emmotum nitens (Benth.) Miers 0 0 2 2 

Lacistemataceae     

Lacistema robustum Schnizl. 2 0 1 3 

Lauraceae     

Beilschmiedia linharensis Sa. Nishida & van der Werff 0 0 1 1 

Cryptocarya riedeliana P.L.R.Moraes 1 0 0 1 

Nectandra cuspidata Nees 0 1 5 6 

Nectandra membranacea (Sw.) Griseb. 3 0 0 3 

Ocotea costulata (Hess) Mez Wild. 0 1 0 1 

Ocotea corymbosa (Meisn.) Mez 3 0 0 3 

Ocotea prolifera (Nees & Mart.) Mez 0 0 1 1 

Ocotea divaricata (Nees) Mez 1 0 0 1 

Lecythidaceae     

Eschweilera ovata (Cambess.) Mart. ex Miers 2 7 4 13 

Lecythidaceae sp. 0 1 0 1 
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FAMILY / SPECIES SB HL LL Total 

Lecythis pisonis Cambess. 0 0 1 1 

Malpighiaceae     

Byrsonima crispa A.Juss. 4 0 2 6 

Byrsonima sericea DC. 3 0 0 3 

Malvaceae     

Apeiba albiflora Ducke 2 0 0 2 

Eriotheca globosa (Aubl.) A.Robyns 0 0 1 1 

Eriotheca macrophylla (K.Schum.) A.Robyns 0 1 0 1 

Hydrogaster trinerve Kuhlmann 0 0 2 2 

Sterculia excelsa Mart. 1 1 0 2 

Melastomataceae     

Henriettea succosa (Aubl.) DC 1 0 0 1 

Miconia calvescens DC. 0 1 0 1 

Miconia dodecandra Cogn. 2 0 0 2 

Miconia hypoleuca (Benth.) Triana 1 0 0 1 

Miconia mirabilis (Aubl.) L.O.Williams 0 0 1 1 

Tibouchina francavillana Cogn. 2 0 0 2 

Meliaceae     

Trichilia lepidota Mart. 1 0 2 3 

Trichilia sp. 0 1 0 1 

Moraceae     

Brosimum rubescens Taub. 0 1 1 2 

Clarisia biflora Ruiz & Pavon 0 1 0 1 

Ficus clusiifolia Schott 1 0 0 1 

Ficus sp. 1 0 0 1 

Helicostylis tomentosa (Poepp. Et Endl.) Rusby 13 14 11 38 

Sorocea racemosa Gaudich. 0 0 1 1 

Myristicaceae     

Virola gardneri (A.DC.) Warb 1 0 0 1 

Virola officinalis Warb. 0 6 7 13 

Myrtaceae     

Calyptranthes concinna DC. 0 0 1 1 

Eugenia copacabanensi Kiaersk. 0 0 1 1 

Eugenia pauciflora DC. 1 0 0 1 

Eugenia flamingensis O. Berg. 0 0 2 2 

Eugenia fluminensis O.Berg. 0 2 2 4 

Eugenia jurujubensis Kiaerisk. 0 0 1 1 

Eugenia platyphylla O. Berg. 0 0 1 1 
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FAMILY / SPECIES SB HL LL Total 

Eugenia sp. 0 1 2 3 

Marlierea sp. 0 1 0 1 

Myrcia pubipetala Miq. 0 2 0 2 

Myrcia amazonica DC. 0 0 1 1 

Myrcia splendens (Sw.) DC. 0 0 1 1 

Myrciaria floribunda (H.West ex Willd.) O.Berg 0 1 0 1 

Myrciaria guaquiea (Kiaersk.) Mattos & D.Legrand 0 0 1 1 

Myrtaceae sp1 0 0 2 2 

Myrtaceae sp2 0 0 1 1 

Plinia muricata Sobral 1 0 0 1 

Nyctaginaceae     

Guapira nitida (Mart. ex J.A.Schmidt) Lundell 0 0 1 1 

Guapira opposita (Vell.) Reitz 2 0 2 4 

Nyctaginaceae sp. 0 0 1 1 

Pisonia tomentosa Casar. 1 4 1 6 

Ochnaceae     

Elvasia tricarpellata Sastre 1 0 0 1 

Olacaceae     

Aptandra tubicina (Poepp.) Benth. ex Miers 0 1 0 1 

Heisteria brasiliensis Engl. 1 0 2 3 

Tetrastylidium grandifolium (Baill.) Sleumer 2 0 0 2 

Peraceae     

Pera glabrata (Schott) Poepp. ex Baill. 0 1 0 1 

Pogonophora schomburgkiana Miers 1 11 5 17 

Phyllanthaceae     

Hieronyma alchorneoides Allemão 2 0 1 3 

Hieronyma oblonga (Tul.) Müll.Arg. 0 2 2 4 

Margaritaria nobilis L.f. 1 0 0 1 

Rubiaceae     

Alibertia elliptica (Cham.) Schum. Wf. 0 1 0 1 

Alseis floribunda Schott 0 1 0 1 

Amaioua intermedia Mart. ex Schult. & Schult.f. 0 3 1 4 

Coussarea ilheotica Müll.Arg. 1 0 0 1 

Guettarda angelica Mart. ex Müll.Arg. 0 2 0 2 

Psychotria carthagenensis Jacq. 1 0 0 1 

Rubiaceae sp1 0 1 0 1 

Rubiaceae sp2 1 0 0 1 

Simira sp. 0 1 0 1 
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FAMILY / SPECIES SB HL LL Total 

Rutaceae     

Zanthoxylum retusum (Albuq.) P.G.Waterman 1 0 0 1 

Salicaceae     

Banara serrata (Vell.) Warb. 1 0 0 1 

Casearia commersoniana Cambess. 1 1 0 2 

Casearia ulmifolia Vahl ex Vent. 0 1 0 1 

Sapindaceae     

Cupania oblongifolia Mart. 5 0 2 7 

Cupania impressinervia Acev.-Rodr. 1 0 0 1 

Talisia coriacea Radlk. 0 1 0 1 

Sapotaceae     

Chrysophyllum flexuosum Mart. 1 0 0 1 

Diploon cuspidatum (Hoehne) Cronquist 0 2 1 3 

Ecclinusa ramiflora Mart. 0 2 1 3 

Manilkara multifida T.D.Penn. 0 0 1 1 

Manilkara triflora (Allemão) Monach. 0 0 1 1 

Micropholis crassipedicellata (Mart. & Eichler) Pierre 0 0 1 1 

Micropholis gardneriana (A.DC.) Pierre 0 1 0 1 

Micropholis guyanensis (A.DC.) Pierre 0 0 1 1 

Pouteria grandiflora (A.DC.) Baehni 0 1 0 1 

Pouteria bangii (Rusby) T.D.Penn. 0 0 5 5 

Pouteria caimito (Ruiz & Pav.) Radlk. 0 1 1 2 

Pouteria ramiflora (Mart.) Radlk. 0 1 0 1 

Pouteria reticulata (Engl.) Eyma 0 1 2 3 

Pradosia bahiensis Teixeira 0 0 1 1 

Pradosia lactescens (Vell.) Radlk. 0 1 0 1 

Sapotaceae sp. 0 1 0 1 

Simaroubaceae     

Simaba guianensis Aubl. 0 0 1 1 

Simarouba amara Aubl. 2 1 0 3 

Siparunaceae     

Siparuna guianensis Aubl. 0 2 1 3 

Urticaceae     

Cecropia pachystachya Trécul 2 0 0 2 

Pourouma mollis Trécul 2 6 3 11 

Pourouma velutina Mart. ex Miq. 8 1 0 9 

Violaceae     
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Rinorea guianensis Aubl. 1 1 1 3 

Vochysiaceae     

Qualea magna Kuhlm. 0 0 3 3 

Vochysia acuminata Bong. 7 0 0 7 

Vochysia gardneri Warm. 1 0 0 1 

Vochysia riedeliana Stafleu 0 0 1 1 

Without Identification     

ind. sp1 0 0 1 1 

ind. sp2 0 1 0 1 

Total 156 156 156 468 

  

 


