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Abstract 
Masafuera Rayadito (Aphrastura masafuerae; Furnariidae) is a Critically Endangered species endemic to Alejandro 
Selkirk Island (Juan Fernández Archipelago, Chile). Categorized as probably extinct in 1980, later estimates, ranging 
from 140 (in 2002) to 500 individuals (in 2006–2007), showed a fluctuating population size of the species. The grazing 
of goats and cattle has increased habitat loss for the species. Other threats are lack of nesting sites, introduced 
species such as feral cats and rats (Rattus rattus and R. norvegicus), and increased populations of natural predators 
like the Masafuera Hawk. In order to increase the availability of nesting sites, 81 nest boxes were installed in different 
habitats in 2006, with evidence of use during subsequent breeding seasons. Despite conservation concerns, 
however, no genetic studies are yet available for this furnariid. This study reports for the first time the levels of 
genetic divergence of the species, based on nucleotide sequences of the mitochondrial DNA (cytochrome oxidase 
subunit 1 gene; COI). Aphrastura masafuerae is closely related to a widespread species of furnariid distributed mainly 
in Chile on the mainland, the Thorn-tailed Rayadito (A. spinicauda). The Masafuera Rayadito diverged from its 
mainland sister species probably during the Pleistocene 0.57 ± 0.19 Myr ago. Consistent with mitochondrial and 
nuclear molecular clocks, the estimated time of the split between A. masafuerae and A. spinicauda is in perfect 
agreement with the geological origin of the Juan Fernández Archipelago, which is of volcanic origin. In order to assess 
genetic variability within the population of this fragile bird, further studies using a multi-locus genetic approach at 
the population level are necessary. 
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Introduction 
Archaeological data show high rates of extinction on the Pacific islands [1]. However, molecular 
phylogenetic studies reveal radiations of several songbirds that might have started on islands, increasing 
avian diversity on nearby continental regions [2]. The high endemism found on islands [3] correlates often 
with high rates of extinction because of inbreeding and human impact [4]. Thus, island ecosystems become 
biodiversity hotspots and at the same time have a high conservation priority. 
 
Usually found in dense vegetation cover [5], the Masafuera Rayadito (Aphrastura masafuerae; 
Furnariidae) is a small, buff-brownish bird characterized by reddish spine-like tail feathers and a light 
superciliary stripe ([6] and references therein). This species is endemic to Alejandro Selkirk Island (Juan 
Fernández Archipelago, Chile) and is declared a Critically Endangered species by the International Union 
for Conservation of Nature (IUCN) [7]. In 1980, Vaurie [8] thought that the species was probably extinct, 
and population size estimates of the early 1990s have been as low as 140 individuals [9]. Subsequent 
conservative estimates, during the post-breeding season of 2006 and 2007 [10], suggested a larger 
population size of 500 individuals, indicating a fluctuating population size of the species during recent 
decades. The grazing of goats and cattle has increased habitat loss for the species. The lack of nesting sites, 
introduced species such as feral cats and rats (Rattus rattus and R. norvegicus) and increased populations 
of natural predators like the Masafuera Hawk (Buteo polyosoma exsul) are threatening this bird as well 
[6,10]. 
 
Conservation efforts have concentrated on nesting and feeding behavior, breeding population size, 
censuses, critical habitat, and other ecological features of this furnariid [5,6,10]. In 2006, for example, 81 
nest boxes were installed in order to increase the availability of nesting sites. Evidence of use of these 
nesting boxes by the Masafuera Rayadito was found in only seven boxes located in the southern part of 
the island [10]. Despite conservation concerns, genetic studies are available only for the sister species 
(Aphrastura spinicauda) and close relatives [11-13]. Nowadays, wildlife conservation programs nearly 
always integrate molecular techniques to explore the genetic makeup of species of concern. Considering 
that the Masafuera Rayadito is threatened with extinction, genetic data are needed for future 
conservation programs. Using nucleotide sequences of the mitochondrial DNA (cytochrome oxidase 
subunit 1 gene; COI), this study reports for the first time the levels of genetic divergence of this endangered 
species from its mainland sister species, the Thorn-tailed Rayadito. 
 

Methods 
Sampling 
Two individuals were captured with mist-nets on Alejandro Selkirk (33°45’ S, 80°45’ W, see Fig. 1), the 
westernmost island of the Juan Fernández Archipelago. This steep volcanic island is located 181 km west 
of Robinson Crusoe Island and 835 km off the Chilean coast. See Castilla [14] for detailed information about 
climate and other geographical characteristics of the island. The birds were captured on the summit region 
of the island (Los Inocentes peak; 1,200 m above sea level) where the species normally reproduces (Fig. 
2). The vegetation of the area consists of dominant fern Lophosoria quadripinnata (95–100% cover), tree-
ferns (Dicksonia externa and Blechnum cycadifolium) and the tree Drimys confertifolia. See Hahn et al. [6] 
for detailed information regarding the nesting habitat of the species. Blood samples were obtained by 
puncturing the brachial vein and stored on FTA cards (Whatman, Germany). Immediately after blood 
sampling, the birds were released in the same place where they ware captured. The capture of the two 
individuals in Alejandro Selkirk Island was authorized by CONAF (Corporación Nacional Forestal, 
Archipiélago de Juan Fernández National Park). 

 



Mongabay.com Open Access Journal - Tropical Conservation Science  Vol.7 (4):677-689, 2014 

679 

 

  
Tropical Conservation Science | ISSN 1940-0829 | Tropicalconservationscience.org 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DNA isolation, PCR amplification and sequencing of COI 
The DNA was extracted from FTA cards following the manufacturer’s instructions. Briefly, the FTA card 
sample discs (1.2 mm) were placed in the PCR amplification tubes and washed two times with 200 µl of 
FTA purification reagent. After removal from the purification reagent, the discs were washed twice with 
200 µl of TE buffer. FTA discs were dried at room temperature for 1 hr. 
 
The primers BirdF1 and COIbirdR2 [15] were used to amplify about 700 base pairs (bp) of the mitochondrial 
cytochrome oxidase subunit 1 gene (COI). The PCR reaction mix (25 µL) contained the following 

components: 2 µL of DNA template (60 ng of DNA), 2.5 µL AmpliTaq® 360 Buffer (10✕), 2 µL of 25 mM 
MgCl2, 2 µL of 10 mM solution of dNTP and 0.125 µL AmpliTaq® 360 DNA Polymerase (Applied Biosystems, 
Germany). 
 
PCR cycles were performed as follows: 94°C for 5 min, 33 cycles of 94°C for 1 min, 50°C for 40 s, 72°C for 
40 s, and a final extension at 72°C for 5 min. PCR products were visualized on 1.4% agarose gels. 
Sequencing of both strands was conducted using an ABI 3730XL Capillary Sequencer (Applied Biosystems, 
Germany) with the BigDye® Terminator Cycle Sequencing Kit version 3.1 by GATC Biotech AG (Konstanz, 
Germany). 
 
The sequences generated in this study have been deposited in GenBank under accession numbers 
JQ739454 and JQ739455. 
 

Data analysis 
COI sequences were retrieved from the GenBank for two families of the Furnarioidea, i.e. Furnariidae and 
Dendrocolaptidae [13]. Sequences were aligned with BIOEDIT v. 7.0.9.0 [16], and phylogenetic trees were 
reconstructed using maximum likelihood (ML) in PAUP* v. 4.0b10a [17], and Bayesian inference (BI) in 
MRBAYES v. 3.1.2 [18]. We explored the model of sequence evolution that fits the data best with 
JMODELTEST v. 0.1.1 [19] and MRMODELTEST v. 2.3 [20]. ML heuristic searches were performed with 
closest stepwise sequence additions, tree-bisection-reconnection, branch-swapping (TBR), ‘multrees’ 
option and the best model found with JMODELTEST. In the ML analyses, the robustness of each node was 

 
 
Fig. 1. Map of the study area. Alejandro Selkirk Island, Archipiélago de Juan Fernández National Park, 
Chile 
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assessed by 1,000 bootstrap replicates. For BI analyses, two independent runs of 10,000,000 generations 
each were performed along with four Markov chains. Trees were sampled every 500 generations and the 
first 4,000 samples were discarded as ‘burn-in’. Uncorrected genetic distances (p-distance) were 
calculated with MEGA v. 5 [21]. Phylogenetic trees were rooted with five representatives of the tapaculos 
(Rhinocryptidae) and the Elegant Crescentchest (Melanopareia elegans; see [13,22,23]). 
 
For the molecular dating, an uncorrelated lognormal (UCLN) model of molecular evolutionary rate 
heterogeneity was also used in the computer program BEAST v. 1.6.2 [24,25]. The analysis was conducted 
using the model found by JMODELTEST v. 0.1.1 [19] that fits the data best. The universal avian clock of 
2.1% sequence divergence per million years (0.0105 substitutions/site/lineage/million years) was 
employed in these analyses [26]. Two independent runs of 20,000,000 generations each were performed 
with sampling once every 1,000 trees. The number of generations required to reach convergence was 
assessed by TRACER v. 1.5 (http://beast.bio.ed.ac.uk/Tracer). 
 

  
 
Fig. 2. View from “Los Inocentes” peak, Alejandro Selkirk Island, Archipiélago de Juan Fernández National Park, Chile. The 
vegetation cover consists mainly of fern Lophosoria quadripinnata and the tree Drimys confertifolia (left). The Masafuera 
Rayadito (Aphrastura masafuerae) caught by a mist-net for blood sampling (right) 

 

 
Results 
The alignment of the protein-encoding gene COI consisted of 694 bp. No internal stop codons or frame 
shifts were found in these sequences that translated entirely by using the chicken mitochondrial code. In 
both individuals of the Masafuera Rayadito, variation was found to be at only one site (0.14%) and 
corresponds to a synonymous transition (T/C) at the third position of the codon (GCT/GCC) that encodes 
the amino acid adenine. 
 
Figure 3 shows the phylogeny based on COI nucleotide sequences. Maximum likelihood and Bayesian 
inference analyses recovered congruent topologies (see Appendices 1 and 2). Topological incongruence 
was due only to nodes supported by low bootstrap or posterior probability values. The phylogenetic 
reconstruction reveals a polytomy and a basal position of Aphrastura among the Furnariidae, and one 
major separate clade for the woodcreepers (Dendrocolaptidae). Aphrastura masafuerae is closely related 

http://beast.bio.ed.ac.uk/Tracer
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to A. spinicauda on the mainland. Both species clustered together with high bootstrap support (see Fig. 
3). 
 
The uncorrected genetic distance (p-distance) between Aphrastura masafuerae and A. spinicauda was 1.2 
± 0.4%. Assuming an avian clock of roughly 2.1%/Myr for the mitochondrial DNA [26] these taxa might 
have recently diverged 0.57 ± 0.19 Myr ago. The Bayesian inference molecular clock analysis shows a 
similar divergence time estimate of 0.71 Myr with a 95% confidence interval of 1.18–0.34 Myr (see 
Appendix 3). 
 
 
 

 

 
 
 
 
 
 
 
 
 
Fig. 3. Majority-rule consensus 
tree derived from Bayesian 
inference (BI) analysis and 
based on 694 bp of the 
cytochrome oxidase subunit 1 
gene (COI). BI posterior 
probabilities (≥0.90) are 
indicated above the branches. 
The model selected for the BI 
analysis consisted of GTR + 
gamma distribution shape 
parameter (G) = 1.42 + 
proportion of invariable sites 
(I) = 0.60. In parentheses are 
the numbers of species 
represented by the terminal 
triangles. See Supplementary 
material for GenBank 
accession numbers and 
complete detailed phylogenies 
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Discussion 
Phylogenetic relationships 
The topology obtained in this study conforms to accepted knowledge about the infraorder Furnariides 
based on nuclear and mitochondrial DNA [13,27-29]. Regarding Aphrastura, the phylogenetic position of 
the genus has adopted different phylogenetic positions within the Furnariidae depending on the marker 
and taxa analyzed. Considering nuclear genes, nucleotide sequences from introns do not provide strong 
support for the relationship of this genus with any other furnariid species in particular, for instance, 
Aphrastura clusters with Coryphistera or Leptasthenura [30]. However, these analyses included a reduced 
number of species [30]. Although the phylogenetic relationships of Aphrastura and other furnariids are 
only partially clear, a larger data set (about 4,000 bp and additional taxa) based on recombination 
activating genes supports a basal position for the genus among the Synallaxinae with high/medium 
bootstrap support [13]. 
 
As in this study, the evidence recovered from another mitochondrial gene, cytochrome b, supports an 
unresolved polytomy at the base of the Furnariidae but a closer relationship of Aphrastura to Synallaxinae 
and the tribe Furnariini [30]. Combined data sets including sequences of nuclear introns and mitochondrial 
genes also support a basal position of this lineage among Synallaxinae [12,30]. 
 
Based on a molecular clock for the myoblogin intron 2 in passerines [29], the genus Aphrastura probably 
diverged from other furnariids at the Lower Miocene [12]. In this study, Bayesian molecular clock analyses 
show also similar ages (19–18 Myr) for the split between the Synallaxinae and Furnariinae (see Appendix 
3). 
 

Juan Fernández Archipelago colonization 
The remote Pacific Island Alejandro Selkirk is located 181 km west of Robinson Crusoe and 835 km west of 
South America. Thus, for dispersing birds like the Thorn-tailed Rayadito [11], the Juan Fernández 
Archipelago represents a biogeographically remote group of islands isolated by a major but traversable 
oceanic barrier. The spatial separation of this archipelago has turned out to be a hotspot of avian 
endemism [31]. 
 
The level of genetic divergence between Aphrastura masafuerae and A. spinicuada supports a recent 
colonization of the Juan Fernández Archipelago by the Masafuera Rayadito in the South Pacific Ocean, 
approximately 0.65 Myr ago. These time estimates do not predate the origin of the Juan Fernández 
Archipelago and are in perfect agreement with the geological age based on potassium-argon dating [32]. 
The three main islands of the Juan Fernández Archipelago are not older than 5.8 ± 2.1 Myr, and Alejandro 
Selkirk Island is the youngest one with 2.44–1.01 Myr [32]. Previous genetic studies performed on other 
Juan Fernández passerines recovered similar time divergences. For instance, using mitochondrial genetic 
markers like the cytochrome b gene, colonization time estimates of 700,000 and 300,000 years have been 
suggested for the Juan Fernandez Firecrown (Sephanoides fernandensis; [33]) and the Juan Fernandez Tit-
Tyrant (Anairetes fernandezianus; [34]), respectively. 
 
The Masafuera Rayadito might have colonized Alejandro Selkirk Island after the emergence of the island 
during the Pleistocene. However, it remains unclear whether this avian species arrived at Alejandro Selkirk 
by a direct colonization from the mainland or from neighboring islands like Masatierra or Santa Clara, 
which are 3.79–4.23 and 5.8 Myr old, respectively. One plausible scenario for this cross-oceanic dispersal 
is an east-west colonization followed by later extinction events on older eastern islands. Modes of 



Mongabay.com Open Access Journal - Tropical Conservation Science  Vol.7 (4):677-689, 2014 

683 

 

  
Tropical Conservation Science | ISSN 1940-0829 | Tropicalconservationscience.org 

speciation such as dispersals from Masatierra to Masafuera and back-dispersal events have been proposed 
for several species of plants [32,35]. Thus, a step-stone model of colonization for the Juan Fernández 
Islands by birds, as in other archipelagos (e.g. the Canary Islands; [36]), cannot be discarded. 
 

Implications for conservation 
Genetic data may provide critical information about population structure [37], genetic variability [38], 
taxonomic status [39] and conservation management units [40]. Estimation of the phylogenetic distance 
among species of a community is essential for determining phylogenetic diversity and the functioning of 
ecosystems [41]. The geographical isolation of the Juan Fernández Archipelago has resulted in the mere 
morphological description of several endemic species of birds, and only a few genetics studies conducted 
on Robinson Crusoe Island are available so far [33,34]. For the first time, the new genetic data obtained in 
the present study provide insights about the level of divergence between the endangered Masafuera 
Rayadito thriving on Alejandro Selkirk and the widespread Thorn-tailed Rayadito on the mainland. 
 
With approximately 130 species, the Synallaxinae (spinetails and allies) contribute nearly half of the 
diversity found within the Furnariidae ([42]), and both species Aphrastura masafuerae and A. spinicauda 
are the sole representative of a probable basal lineage in the phylogeny of this speciose group of 
Neotropical birds ([12,13]). 
 
Despite the existing hesitation to include phylogenetic diversity in conservation planning ([43]; but see 
[44]) and in order to keep evolutionary history to the highest level possible, many conservation studies 
incorporate phylogenetic diversity analyses in order to maximize the number of clades rather than the 
number of species conserved, giving a high relative weight to species which are taxonomically distinct [45]. 
Lineages containing few or no sister taxa, which is the case of Aphrastura, may contribute greatly to 
phylogenetic diversity ([46]). With relatively long-branch lengths leading to the two extant species of 
Aphrastura in all phylogenetic reconstructions (this study), this genus does contribute importantly to the 
phylogenetic diversity within the Furnariidae. Thus, coupled with its small population size and restricted 
distribution on a remote island, the phylogenetic position of the Masafuera Rayadito is an additional 
biodiversity component supporting the high conservation priority of the species. 
 
Population size fluctuations (e.g. bottlenecks) may be caused by glaciations, climate change, or 
anthropogenic impact determining the demographic history of the species ([47]). Based on the level of 
genetic divergence estimated in this study, the Masafuera Rayadito has probably survived in isolation on 
Alejandro Selkirk Island during the last 600,000 years. We do not know how much the environment of this 
species has changed during the last hundred thousand years, but human impact has been documented on 
Alejandro Selkirk during recent decades ([6,10]). Census estimates indicate that the population of this 
endangered species has probably been fluctuating during this time (for instance, see [9] and [10]). 
 
Genetic variation dynamics of small and isolated populations like that of Masafuera Rayadito are explained 
mainly by two phenomena: genetic drift, which may lead to loss of adaptive alleles or the fixation of 
deleterious alleles; and inbreeding, which may increase homozygosity within the population ([48]). As a 
consequence of these phenomena, the viability of populations may be affected by a fitness reduction or 
inbreeding depression. How did the founder population of the Masafuera Rayadito manage to overcome 
inbreeding depression or survive probably successive bottlenecks on a remote island like Alejandro Selkirk 
during the last hundred thousand years? The species has probably been able to maintain a certain level of 
genetic variability. For instance, the differences found on nucleotide sequences obtained from two 
individuals (this study) indicate some degree of intrapopulation genetic variability, enabling the 
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persistence and survival of the lineage. However, these data are not enough to determine the genetic 
makeup of the species, since they are based on only two individuals and one genetic marker. In order to 
understand the time and mode of evolution of the Masafuera Rayadito as part of an insular endemic 
avifauna inhabiting the remote Juan Fernández Archipelago, further studies using a multilocus genetic 
approach at the species and population level are necessary. 
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Appendix 1. Detailed maximum likelihood (ML) phylogram based on 694 base pairs of the cytochrome 
oxidase subunit 1 gene (COI). Bootstrap values (≥0.75%; 1,000 replicates) are indicated for each node. 
The model selected for the ML analysis consisted of GTR + gamma distribution shape parameter (G) = 
0.87 + proportion of invariable sites (I) = 0.58. GenBank accession numbers indicated for each species.  
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Appendix 2. Detailed Bayesian inference (BI) tree based on 694 base pairs of the cytochrome oxidase 
subunit 1 gene (COI). BI posterior probabilities (≥0.90) are indicated above the branches. The model 
selected for the BI analysis consisted of GTR + gamma distribution shape parameter (G) = 1.42 + 
proportion of invariable sites (I) = 0.60. GenBank accession numbers indicated for each species. 
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Appendix 3. Bayesian inference chronogram (GTR + G + I) inferred from COI in 114 species of the Furnarioidea. 
Bayesian age estimates are shown for each node. Bars indicate 95% highest posterior density (HPD) intervals. 
GenBank accession numbers indicated for each species. 
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