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Abstract 
The objective of this study was to document the structure of the fish assemblages found in the aquatic 
environments affected by the Coaracy Nunes hydroelectric reservoir in Ferreira-Gomes, Amapá (Brazil) and 
the principal factors that determine this structure. In order to do this, standardized samples were collected of 
the fauna and the environmental parameters in the four principal sectors of the reservoir (upstream, the 
reservoir, the lake, and downstream). Fish species richness, abundance, and biomass were estimated for each 
sector. The abundance data were analyzed using null models of co-occurrence. A multivariate BIO-ENV 
analysis was used to examine the relationship between biological and environmental factors. The relationship 
between species richness and biomass of both prey and predator species was analyzed to determine whether 
predation was affecting community structure. Size spectrum analysis was conducted to verify whether fishing 
has influenced community structure. The results indicated contrasting seasonal patterns of deterministic 
processes in the downstream and lake sectors, suggesting that competition or abiotic factors may play a role 
in community structure. Stochastic patterns were recorded in the other sectors. Environmental factors, such 
as water transparency and depth, and the reservoir level were also closely related to the relative abundance 
of species in the communities. The relationship between the species richness and the biomass of predators 
and prey indicated that predation was an important determinant of community structure, which was 
interrupted by selective fishing. Despite the stochastic nature of most processes, deterministic factors were 
fundamental to the structure of the assemblages found in the downstream and lake sectors. 
 
Keywords: co-occurrence, stochastic processes, deterministic size spectrum, predator-prey relationships. 
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Introduction 
A number of studies have suggested that some ecological communities are structured by random, rather than 
systematic processes [1], while the structure of others may be determined by species interactions [2] or 
environmental factors, such as local and regional processes that function as filters to mold community 
parameters [3–5]. Other studies have shown that biotic and abiotic factors combine to regulate the diversity 
and composition of species in a community, although the relative contribution of these processes is still poorly 
understood [6–10]. 
 
In the specific case of fish communities, the relative importance of different environmental variables is related 
to the scale of analysis. On a small scale, biotic factors may play an important role in the organization of the 
community, whereas, on a broader scale, biogeographic processes and abiotic factors may be more important, 
including anthropogenic modifications [5, 11]. Gotelli and Ulrich [3] emphasize the fact that community 
structure is a result of the simultaneous contribution of multiple factors, such as environmental gradients, 
competition, predation, and facilitation, which may have cumulative or opposing effects. Where the latter 
occur, no clear pattern may emerge. 
 
The analysis of the co-occurrence of species has become a common practice in ecological studies that aim to 
understand the deterministic or stochastic patterns that underpin community structure, and the 
environmental factors that determine these patterns [12]. Null models simulate the behavior of communities 
in the absence of biological interactions (interspecific competition) that may affect their structure. Biological 
interactions, such as competition, will alter the random distribution of species predicted by null models, 
creating more systematic patterns [3, 13]. 
 
In many tropical aquatic ecosystems, predation is also a prime mover of community structure, affecting the 
species composition, abundance, and biomass of fish communities [14]. High predation rates may have 
profound knock-on effects throughout the trophic network, with restrictions on productivity [15, 16], and top-
down control (predation) of the food chain may potentially lead to major changes in the biomass of the lower 
trophic levels in lacustrine ecosystems [17]. 
 
Fisheries also have an impact on fish community structure and composition, as well as on the food chain. 
Piscivorous and carnivorous fish are the primary target species of many commercial fisheries, and a reduction 
in the abundance of these species in the wild generally reflects the impact of the exploitation of fishery 
resources. This also has an effect on community structure [18]. 
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In reservoirs, the modification of river dynamics caused by damming results in alterations in the local fish 
community, with the proliferation of species that are able adapt to the new conditions, and the decline or 
extinction of others that are less able to adapt [19–21]. While the long-term effects of this process may be 
relatively well-known, the factors that determine the structure of the community following damming are still 
poorly understood. 

 
Coaracy Nunes, on the Araguari River in the state of Amapá, was the first reservoir built in the Brazilian 
Amazon region for the production of electricity, with construction beginning in 1967 [22]. At this time, 
environmental impact studies were not a legal requirement, and no scientific data were collected on the local 
fish community until the present study, conducted in 2008. As new dams are being built or planned for the 
Araguari, effective environmental management practices need to be put in place, and data from Coaracy 
Nunes are essential for the systematic assessment of the long-term effects of the impacts of damming. Given 
this, the present study analyzed the structure of the fish communities found within the area of the Coaracy 
Nunes reservoir, with the aim of identifying and evaluating the role of the different factors, both biotic and 
abiotic, in the configuration of the local assemblages. The study tested the hypothesis that the structure of 
the fish assemblages found in lotic environments is regulated by stochastic factors, while that of lentic habitats 
is governed by deterministic ones. 

 

Methods 
Study area 
The study area is located in the middle sector of the Araguari River, in the area influenced directly by the 
Coaracy Nunes hydroelectric power station (UHE Coaracy Nunes), between latitudes 00°45’  N and 00°88’  N, 
and longitudes 51°13’  W to 51°20’  W. The Araguari is the principal river of the Brazilian state of Amapá, with 
a drainage basin of approximately 38,000 km², stretching between the Tumucumaque mountains, in the 
north, and the Atlantic Ocean, in the south, where it is influenced by the Amazon River [23]. 
 
The local terrain is mildly undulating, at altitudes of between 28 m and 65 m a.s.l. The climate is super-humid 
equatorial, with temperatures of between 20°C and 36°C, with the highest temperatures reached at the end 
of the day, between 17:00 h and 19:00 h, and the minimum temperatures recorded just after dawn, between 
05:00 h and 07:00 h [24]. Mean relative humidity is 83.5% [24]. 
 
Annual precipitation is typically between 1500 mm and 3500 mm, with two well-defined seasons, a rainy 
season between mid-December and June, known locally as the “winter”, and a dry season, between July and 
mid-December, known as the “summer”. While the rainy season is characterized by frequent torrential 
downpours, precipitation is greatly reduced during the dry season, when the trade winds increase, intensifying 
between September and December. Historical records of the level of the river (Fig. 1) indicate a flood phase 
between January and June, which coincides with the rainy season, and a low water phase between July and 
December. The local vegetation is characterized by a mosaic of tropical rainforest, savanna, and swamp [24].   
 
Four sectors were established for the present study (Fig. 1), representing four distinct environments: (i) 
downstream from the dam, an area characterized by lotic environments, with water flow being determined 
by the operation of the turbines in the dam, (ii) the reservoir proper, with semi-lotic conditions intermediate 
between those of the river and the lake, (iii) the lake area, adjacent to the reservoir, with lentic characteristics, 
and (iv) the upstream area, with lotic characteristics. Extensive deforestation is evident along the middle and 
upper margins of the reservoir and the upstream sector, while the other areas are relatively well-preserved. 
Gravel is also extracted from the upstream sector. 
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Fig. 1. Study area: the four study sectors (upstream, reservoir, lake, and downstream) located within the area of 
the Coaracy Nunes reservoir in Ferreira Gomes, Amapá, Brazil, and mean monthly variation in the water level 
(mean ± standard error, in cm) at Coaracy Nunes between 1952 and 2010. 

 
 
Experiment design 
Data were collected in each sector of the study area every two months between May, 2009, and July, 2010, 
with four samples representing the rainy season, and four, the dry season. Within each sector, seven areas of 
calm water were selected as sampling points for the collection of fish specimens, using gillnets, and the 
measurement of the physical-chemical parameters of the water – temperature (C°), pH, electrical conductivity 
(μS.cm-1), dissolved oxygen (mg L-1), transparency (m), and depth (m). All parameters except pH and 
transparency were recorded using a calibrated YSI-85 multi-analyzer, with pH being measured using an YSI-60 
potentiometer, and transparency with a Secchi disk attached to a line graded in centimeters.  
 
Precipitation (mm) and air temperatures (ºC) for the study period were obtained from the Coaracy Nunes 
meteorological station, together with data on river discharge and water levels. Data on the level of the 
Araguari River in the study area were obtained from the records from measuring station 22, available on the 
Brazilian National Waters Agency (ANA) website. 
 
Standardized samples of the fish fauna were collected using seven sets of eight gillnets made of monofilament 
nylon with internode meshes ranging from 3 cm to 24 cm. Each set of nets was set at one of seven sampling 
points located within each sector, separated by a minimum distance of 500 m. The nets were 10 m – 40 m in 
length, and 1.5 m – 5.0 m in height, with a total area of 525 m² per set. The nets were set between 16:00 h 
and 09:00 h (a total of 17 hours), and fish were removed every four hours. Complementary sampling was 
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conducted using equipment such as hand-lines, cast nets, trawls, and harpoons, to guarantee the most 
complete list of species possible for each sector. 
 
Once retrieved, the specimens were stored on ice for identification, measurement, weighing, and 
photography, and then fixed in 10% formaldehyde for identification to the lowest possible taxonomic level. 
Identification was based on the specialist literature [25–29]. The classification was confirmed by Dr. Michel 
Jegú of the Musée de Histoire Naturelle in Paris, France, and voucher specimens were deposited in the 
Ichthyology and Limnology Laboratory at the Federal University of Amapá (UNIFAP) in Macapá. 
 
Statistical analyses 
Basic parameters were determined for each sector, including species richness [30], and relative abundance 
and biomass, based on the Capture per Unit Effort (CPUE), calculated by CPUE = (C/E) * 100, where C = number 
of individuals, for CPUEn (or total weight, in the case of biomass, CPUEb) captured, and E = sampling effort 
(m² of net by hours of sampling). In the present case, sampling effort was 525 m² of net in 17 hours. 
 
Spatial and temporal variation in environmental parameters, species richness and CPUEb was evaluated using 
a two-way Analysis of Variance (ANOVA), considering α = 0.05. The data analyzed using these procedures were 
first tested for normality (Kolmogorov-Smirnov and Shapiro-Wilk tests) and homoscedasticity of variance 
(Levene). When these assumptions were not upheld, the square root of the values was used for analysis. 
Differences detected in the ANOVA were verified by Tukey’s a posteriori test to determine which pairs of sites 
were significantly different (α = 0.05). 
 
A multivariate BIOENV analysis was conducted to verify the influence of environmental factors on the spatial-
temporal structuring of the local fish communities using measures of abundance (CPUEn) during the two 
seasons. This analysis identifies the parameters that contribute most to community structure. It is based on a 
multivariate comparison of the degree of agreement between the two matrices of biotic and abiotic similarity. 
The Bray-Curtis statistic was used for the biotic variables, and the normalized Euclidian distance for the abiotic 
variables [31]. All the multivariate analyses were run in PRIMER 6.0 [32]. 
 
A null model analysis was used to verify the existence of patterns of community structure related to biotic 
variables (competition, predation), abiotic or random factors. This analysis is based on the comparison of the 
indices of co-occurrence with the values estimated by the model. The occurrence of the species found in each 
sector was randomized [33] using EcoSim 7.0 [34], with the standardization of the data indicated by SIM09. 
The C score is an index which correlates negatively with the co-occurrence of species, and the observed score 
will be significantly higher than the expected one in communities structured by competitive interactions or 
abiotic factors. When the scores are lower than expected, community structure may be being affected by 
environmental affinities or facilitation. A random distribution may reflect the combined effects of a range of 
specific factors or simply, stochastic processes [7]. 
 
To evaluate the possible influence of predation on community structure, the species were classified according 
to their feeding habit as either (i) predators (piscivores, with a diet consisting primarily of other fish) or (ii) 
prey (species with non-fish diets) [35]. Linear correlations were run between the species richness of predator 
and prey, as well as their relative biomass (CPUEb). This analysis contributed to the evaluation of the effects 
of predation on fish biomass, and hence to community structure in the different sectors. 
 
Analyses of the size spectrum were conducted in order to identify the possible effects of fisheries on 
community structure in the four sectors. For this, a linear regression of mean abundance per size class on 
mean body length, expressed as a Napierian logarithm, was calculated for the comparison of seasons and 
sectors. The parameters slope (b) and intersection (a) of the linear relationship between these variables reflect 
the intensity of fishery exploitation in the study area [36, 37]. 
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Results 
Environmental parameters 
Mean river discharge was 328 m³/s, ranging from 96 m³/s in November 2009 to 396 m³/s in May 2009, with a 
significant difference between seasons (t = -4.92; p = 0.002). The mean river level during the study period was 
579.625 cm, varying from a low of 387.5 cm in November, 2009, to 678.5 cm in May, 2009. In this case, 
however, there was no significant seasonal difference (t = -0.8815; p = 0.410). Significant differences were 
found among sectors in all physical-chemical parameters except pH (Table 1).  
 
Table 1. Meteorological and physical-chemical parameters recorded in the different sectors of the study area at UHE 
Coaracy Nunes during the study period. (Mean ± SD (minimum–maximum) value recorded in the sector). 
 
 

Variable Downstream Reservoir Lake Upstream ANOVA 

Temperature (°C) 
27.11±0.4  

(26.52-27.75) 
27.99±0.21 
 (27.75-3.5) 

27.75±0.15 
 (27.50-27.95) 

26.12±0.30 
 (25.73-26.60) 

F = 86.382; p = 0.000 

O2 (mg.L-1) 
5.04±0,02 
(5.01-5.06) 

3.5±0.65  
(3.19-5.11) 

5.18±0.10  
(5.00-5.30) 

4.65±0.64 
 (3.22-5.03) 

F = 742.430; p = 0.000 

pH 
4.64±0.25 
(4.40-5.24) 

4.68±0.28  
(4.2-5.02) 

4.80±0.27 
 (4.54-5.23) 

4.38±0.63 
 (3.32-5.02) 

F = 6.474; p = 0.056 

Transparency (Secchi-m) 
1.56±0.35 
(1.13-2.13) 

1.74±0.17 
 (1.55-1.98) 

1.74±0.22 
(1.48-2.08) 

1.60±0.20 
 (1,18-1.82) 

F = 3.035; p = 0.031 

Conductivity (µS. cm-1) 
19.33±0.19 

(19.08-19.73) 
22.4±0.59  

(21.53-23.48) 
18.43±0.17 

 (18.15-18.73) 
18.41± 0.30  

(18.05-18.90) 
F = 271.598; p = 0.000 

Depth (m) 
3.69±0.31 
(3.12-4.05) 

7.23±1.94 
(5.4-9.95) 

7.23±0.55 
(6.35-7.82) 

4.81±0.90 
(3.65-6.10) 

F = 77.716; p = 0.000 

 
 

Total monthly precipitation ranged from 7.3 mm to 475 mm, with the highest values being recorded between 
January and March, 2010, and the lowest in September and November, 2009. There was a significant 
difference (t = -4.283; p = 0.004) in monthly precipitation between the rainy (January–June) and dry (July–
December) seasons, which was clearly related to the seasonal variation in fluvial discharge. Temperatures 
varied from 20.0°C to 33.5°C, with the highest monthly means being recorded in November, 2009, and March, 
2010. In contrast to the precipitation pattern, no marked seasonal variation was recorded in ambient 
temperature (t = -0.416; p = 0.690).  

 
Fish species 
The total species richness recorded for the study area was 81 species. The lowest species richness was 
recorded during high water, and the highest during the low water period.  Species richness varied considerably 
among the sectors, with 64 being recorded in the downstream sector, 40 in the reservoir, 33 in the lake, and 
21 in the upstream sector (Appendix 1).  
Total species richness varied between seasons in each of the different sectors. In the downstream sector, 49 
species were recorded during high water, and 51 during low water, while in the reservoir, 31 and 32 species 
were registered at high and low water, respectively, 25 and 28 species were recorded in the lake, and 16 and 
18 species in the upstream sector. Species richness varied significantly among sectors (F = 27.375; p < 0.001), 
with the greatest differences being found between the upstream and downstream sectors (Tukey: p < 0.05). 
Differences in species richness between the seasons were not significant for any of the sectors (F = 0.005; p = 
0.942). 
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Total relative biomass (CPUEb) was 37.046 g.m-2.h-1, ranging from 17.885 g.m-2.h-1 during the flood period to 
19.160 g.m-2.h-1 in the ebb. By weight, the CPUEs were 8.848 g.m-2.h-1 and 9.136 g.m-2.h-1 (in the flood and ebb 
periods respectively) in the downstream sector, 4.797 g.m-2.h-1 and 4.086 g.m-2.h-1 in the reservoir, 2.144 g.m-

2.h-1 and 3.736 g.m-2.h-1 in the lake sector, and 2.094 g.m-2.h-1 and 2.200 g.m-2.h-1 in the downstream sector. 
Significant variation was found in the mean biomass among the sectors (F = 6.380; p < 0.001), with the most 
significant differences being found between the downstream sector and the lake and upstream sectors 
(Tukey: P < 0.05). No significant seasonal variation was found in relation to any parameter (F = 1.213; p = 
0.282). 
 
Co-occurrence of species 
Significantly higher C scores (p < 0.05) were obtained for the downstream and lake sectors in the flood season 
when compared to the expected values (Table 2). This indicates that these communities have a deterministic 
structure, influenced by biological and/or environmental factors. No clear pattern was found in the other 
areas or periods.  

 
 
 

Table 2. Observed and expected results for the C-Score index for the fish assemblages in the area of 
the UHE Coaracy Nunes reservoir. 
 

 C score 

Sector/period Observed Expected SD-expected (p:obs > exp)  

Downstream/flood 1.76 1.76 0.00117 0.530 
Downstream/dry 1.53 1.50 0.00007 0.001 
Reservoir/flood 1.34 1.33 0.00038 0.280 
Reservoir/dry 1.35 1.36 0.00053 0.690 
Lake/flood 1.11 1.08 0.00067 0.010 
Lake/dry
Upstream/flood 0.97 0.95 0.00130 0.340 
Upstream/dry 1.26 1.24 0.00645 0.250 

Statistically significant correlations: P < 0.05 
 
 

Environmental versus biological parameters 
The BIO-ENV analysis recorded strong correlations between the CPUEn values and different environmental 
parameters recorded in the study area (Table 3). During both seasons, the strongest correlations were found 
in the reservoir sector, and the weakest in the lake. In the reservoir and downstream sectors, the same 
combination of variables was recorded in both seasons, whereas in the lake, distinct patterns were recorded 
in the two seasons, and there was a difference in the relative influence of the variable in the upstream sector. 
Even so, correlations were strongest in the lake sector, and weakest in the reservoir, especially during the ebb 
period. Overall, the environmental factors that correlated most consistently with the biological variables were 
transparency, depth, water level, precipitation, and river discharge.  

 
Size spectrum         
The down- and upstream sectors were characterized by the shallowest regression slopes (b) in the size 
spectrum analysis, which indicated the presence of larger individuals than in the other two sectors (Table 4). 
In the specific case of the downstream sector, all the intercepts (a) were significantly different from zero (p < 
0.05), which was not the case for the slopes. A similar pattern was recorded for the reservoir and upstream 
sectors. In the case of the lake community, both “a” and “b” were significantly different during the dry season, 
but during the rainy season, only “a” varied significantly, diverging from the seasonal pattern recorded in the 
other areas. In the reservoir, the steepest slope (b) was recorded in the rainy season (Table 4). 
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Predator versus prey species 
The total number of predator species in each sector was smaller than that of prey. In the downstream sector, 
there were 21 species of predator and 37 of prey, 17 and 20 species, respectively, in the reservoir sector, 14 
and 17 in the lake sector, and nine and 11 in the downstream sector. The richness of predator species varied 
significantly among sectors (F = 6.751, p = 0.006), with the greatest difference being found between the 
upstream sector and the reservoir and downstream sectors (Tukey: p < 0.05). The richness of prey species was 
also significantly different between the downstream assemblage and those of all other sectors (F = 11.126, p 
< 0.001; Tukey < 0.05).  
 
 
 

Table 3. Seasonal variation in the relationship between the relative abundance of fish (CPUEn) in the 
different sectors of the Coaracy Nunes reservoir and environmental variables, based on Spearman 
correlation coefficients. 

 
 

Sector/period N° of variables rs Combination 

Downstream/flood 1 0.314 Transparency 
 2 0.600 Transparency, discharge 
 3 0.771 Transparency, discharge, precipitation  

Downstream/dry 1 0.486 Transparency 
 2 0.829 Transparency, discharge* 

 3 0.771 Transparency, discharge, precipitation 

Reservoir/dry 1 0.486 Water level 
 2 0.600 Water level, precipitation 
 3 0.200 Water level, precipitation, depth 

Reservoir/dry 1 0.086 Water level 
 2 0.086 Water level, precipitation 
 3 0.200 Water level, precipitation, depth 

Lake/flood 1 0.829 Precipitation 
 2 0.886 Precipitation, depth 
 3 0.943 Precipitation, depth, discharge* 

Lake/dry 1 0.714 Transparency 

 2 0.771 Transparency, depth 

 3 0.829 Transparency, depth, water level* 

Upstream/flood 1 0.714 Depth 

 2 0.886 Depth, water level 
 3 0.543 Depth, water level, discharge 

Upstream/dry 1 0.600 Depth 

 2 0.657 Depth, discharge 

 3 0.714 Depth, discharge, water level* 

Statistically significant correlations:* (P < 0.05) 
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Table 4. Results of the size spectrum analysis (log–log regression of relative abundance on size classes) showing the 
slope (b) and intercept (a) with their respective standard errors for the fish assemblages of the different sectors of the 
area of influence of the Coaracy Nunes reservoir in Amapá, Brazil. 
 

Sector 
  

  Value recorded during the flood –Dry periods in sector: 

 Downstream Reservoir Lake Upstream 

  Flood Dry Flood Dry Flood Dry Flood Dry 

Slope 

b -1.55 -2.65 -1.05 -1.00 -0.88 -1.42 -1.85 -3.93 

St. error 1.53 1.42 0.68 0.65 0.81 0.53 2.01 1.78 

t -1.05 -1.85 -1.52 -1.53 -1.08 -2.65 -0.92 -2.2 

Intercept 

a 4.83 5.91 3.63 3.59 3.47 3.84 3.72 3.89 

St. error 1.15 1.19 0.29 0.34 0.36 16.22 0.37 0.36 

t 4.18 4.96 12.3 10.51 9.51 4.69 9.84 10.8 

Adjust to Model 

F 1.00 3.45 2.32 2.34 1.18 7.06 0.85 4,86 

R2 0.11 0.3 0.32 0.36 0.22 0.58 0.14 0.54 

p 0.34 0.09 0.18 0.20 0.33 0.04 0.39 0.09 

 
 
The relative biomass of predators was higher than that of prey in the upstream and reservoir sectors, as well 
as the downstream sector during the flood period (Fig. 2). In the lake and downstream sectors, by contrast, 
the relative biomass of prey species was higher than that of the predators. Predator biomass was significantly 
higher in the downstream sector than in the reservoir, lake, and upstream sectors (Flood: F = 4.686; p = 0.022; 
Tukey < 0.05; Dry: F = 4.683; p = 0.022; Tukey < 0.05). For prey species, significant differences (F = 6.379; p = 
0.007) were found between the downstream and upstream assemblages during the dry season (Fig. 2).  
 

 

 
 
 
 
 
Fig. 2. Seasonal variation in 
the relationship between 
predator and prey species 
richness (S) in the fish 
assemblages of the four 
sectors of the Coaracy Nunes 
study area in Amapá, Brazil. 

 

 
 
 



Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 16-33, 2016 

 

 

 

Tropical Conservation Science | ISSN 1940-0829 | Tropicalconservationscience.org 

25 

There was a positive correlation between predator and prey species richness in the majority of the fish 
assemblages found within the area of the Coaracy Nunes reservoir, except for the reservoir during the dry 
season, and the upstream area during the flood periods. In both these cases, a negative correlation was found 
(Fig. 3). These correlations (Pearson’s r) varied from medium to very strong, reflecting the role of predation 
on community structure. 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Seasonal variation 
in the relationship 
between predator and 
prey species relative 
biomass (CPUEb) in the 
fish assemblages of the 
four sectors of the 
Coaracy Nunes study 
area in Amapá, Brazil. 

 

 
The relative biomass of predators was related positively to that of prey species in all the assemblages, and in 
both seasons, which indicates that prey biomass was adequate for the maintenance of the local predator 
biomass, irrespective of the seasonal conditions. Given this, predation has a fundamental effect on the 
organization of the communities found in all the areas to a greater or lesser extent (Fig. 2 and 3).  
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Discussion       
No significant temporal variation was observed in the physical-chemical parameters of the water anywhere 
within the study area, nor did water levels or air temperatures vary significantly among sectors or between 
seasons. However, the depth of the water, river discharge, and rainfall varied significantly among sectors and 
between seasons. These fluctuations in depth and discharge resulted from greater input of rainfall run-off 
during the rainy season than in the dry season, as well as the daily adjustment of the reservoir level through 
the regulation of the dam gates and abductor channels to guarantee the functioning of the turbines. This led 
to not only seasonal, but also daily variation in the water level of all four sectors, and in particular the 
occasional drying out of the downstream sector. In fact, the daily variation in water level may exceed the 
seasonal amplitude and have a profound effect on the physical-chemical characteristics of the water which 
may. in turn, affect biological productivity [20, 38, 39]. 

 
Species richness was considerably lower in the reservoir (40 species), lake and upstream sectors (21 species) 
compared to the downstream sector (66 species). Sá-Oliveira et al. [40] recorded an additional 40 species (a 
total of 106) in the downstream sector using a variety of fishing methods. This comparison indicates that the 
construction of the dam has had a negative influence on all the upstream fish communities, including those 
of the reservoir, but not on the downstream area. A similar situation has been found in other Amazonian 
hydroelectric schemes, such as Curuá-Una [41], Tucuruí [41], Balbina [42], and Samuel [43], as well as at sites 
in other Brazilian regions [44–47]. Agostinho et al. [20] review of the data from 77 Brazilian reservoirs which 
revealed that most contained fewer than 40 species, similar to the findings of the present study. 

 
In addition, the higher levels of abundance recorded in the lake and reservoir were due to the capture of 
small-bodied species, such as Hemiodus unimaculatus, Psectrogaster af. falcata, Charax gibbosus, Geophagus 
proximus, and Serrasalmus gibbus, common omnivores and carnivores in lacustrine environments. The 
presence of these species may be related to the modification of the lotic environment to a semi-lotic and 
lentic one, as observed at Curuá-Una [41] and other reservoirs [48]. 

 
The relative abundance of fish in the downstream area was low compared to that recorded in the lake and 
reservoir. However, the fauna in the downstream area presented the most balanced distribution of 
abundance among species, except in the case of Hemiodus unimaculatus, for which the higher CPUEn value 
was related to its habit of forming shoals, especially during the breeding season, thus increasing the 
abundance of the species during sampling. Vieira et al. [41] also recorded a relative abundance of 
hemiodontids in the Curuá-Una reservoir, due to the formation of shoals by these fish. The lowest relative 
abundances were recorded in the upstream area, where Ageneiosus ucayalensis, Leptodoras sp., and 
Serrasalmus gibbus were the most common species in the samples. In addition to the effects of the quality of 
the environment in the different zones of the study area, a number of factors contributed to the observed 
pattern, such as sampling effects, related to the morphological characteristics of the study area. 

 
The highest relative biomass was recorded in the downstream area, and was influenced primarily by the 
contribution of Boulengerella cuvieri and Ageneiosus ucayalensis. The high biomass recorded in the reservoir 
was influenced by the large-bodied species, such as Ageneiosus ucayalensis, as well as the small- to medium-
sized species, like Hemiodus unimaculatus, Serrasalmus gibbus, and Geophagus proximus. 

 
The higher relative biomass recorded for a single species in the lake sector was for Curimata inornata. This 
bentho-pelagic detritivore forms large schools for trophic and breeding migrations [49]. The limnological 
characteristics of the lake sector are similar to those of an oligotrophic lake, with high transparency and low 
primary productivity, fed primarily by the input of allochthonous material [49], which favors detritivorous 
species such as C. inortata. 
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The co-occurrence analysis indicated that species were distributed randomly in the reservoir, lake, and 
upstream sectors in both seasons, indicating that the structure of the respective communities was determined 
by stochastic factors. In the downstream sector during the ebb period, by contrast, and in the lake during the 
flood, more deterministic patterns of community structure were observed, indicating the influence of 
biological interactions and/or environmental factors.  

 
In the downstream sector, this process may be associated with the reduction of the river’s discharge during 
the dry season, which led to a decrease in the flooded area, concentrating the species into a smaller area and 
intensifying their interactions, either competitive and/or predatory. Under these conditions in limnetic 
systems, biological processes may have an even stronger influence on the distribution of organisms than 
environmental variables, or even the combined effects of habitat heterogeneity and resource partitioning. 
The simultaneous influence of these factors reduces competition between species and facilitates their 
coexistence [50–52]. Huston [53] concluded that the intensity of the disturbance provoked by the annual 
fluctuations in river level and competitive exclusion are the fundamental factors controlling species diversity. 
The pattern observed in the lake sector during the flood period may have been related to the lentic 
characteristics of this environment, as well as its reduced area, which may have intensified the interaction 
between biotic and abiotic factors on a local scale, as observed by Huston [53]. 

 
A number of studies have demonstrated that the variation in hydrological features is one of the principal 
determinants of community structure in lotic environments [54–56], and that local processes – limnological 
and structural aspects of the habitat and intra- and inter-specific interactions – are the primary factors 
determining variations in community structure among habitats or geographical areas. However, it is normally 
difficult to determine which factors are the most important [40]. 

 
The composition of local communities may be determined by a combination of both stochastic and 
deterministic processes, including the combined effects of environmental gradients, competition, predation 
and facilitation [57–59]. As many of these factors may have contrasting effects, the end result may lack any 
systematic spatial pattern [3]. In our study, the results of the BIO-ENV indicated that abundance was related 
primarily to the depth of the reservoir, discharge, transparency, and rainfall levels. However, most processes 
were more stochastic, and systematic patterns were observed only in the downstream sector during the dry 
season and in the lake sector. The reduced variation in the level of the reservoir over the course of the year 
contributed to the stability of the reservoir and lake sectors, with daily fluctuations occurring in all sectors due 
to the operational adjustments of the level of the reservoir, which may have been responsible for variation 
on a localized scale. 

 
The operational adjustments of the reservoir level interfere in the flood-ebb cycle of the river and modify the 
synchrony of the reproductive patterns of most fish species. Even where synchrony is upheld, the short 
duration of the flood period may impede the development and recruitment of the juveniles, affecting 
community structure [60, 61]. This artificial modification of the hydrological cycle may cause a certain amount 
of disorganization in the local communities at all levels. Similar scenarios have been observed in other 
reservoirs, indicating that the modification of the hydrological cycle and, in particular, the occurrence of 
unpredictable flood pulses, may result in a continuous reorganization of the local fish communities [30, 63, 
64]. Moderate levels of disturbance may nevertheless maximize the diversity of habitats and, as a 
consequence, species diversity [65], but it may also affect major biotic interactions and have a negative effect 
on diversity [66]. 

 
In addition to the seasonal fluctuations in the hydrological regime, habitat heterogeneity, and predation, a 
number of other fundamental factors, such as topography, geomorphology, and specific features of the 
environment’s hydrodynamics, such as river width and depth, discharge, and substrate types, may also have 
a profound effect on fish community structure [67, 68]. In lakes, the principal factor determining community 
structure is the flood pulse [60, 61]. In particular, seasonal variations in the depth of the water can have 
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fundamental effects on the whole community by affecting the availability of feeding resources, breeding 
areas, and refuges [69]. 

 
Our study confirmed the role of predation in community structure, with a strong correlation between the 
species richness of predators and prey throughout the year, albeit with a negative relationship in the reservoir 
sector during the dry season, and the upstream sector during flood periods. The abundance of piscivorous 
species, such as Ageneiosus ucayalensis, Serrassalmus gibbus, and Acestrorhynchus falcirostris, which are well 
adapted for survival in waters with strong currents, as well as others of the genus Hoplias, together with the 
plentiful numbers of prey species, like Hemiodus unimaculatus and Curimata inornata, and other detritivores 
and omnivores, may be contributing to the equilibrium in the predator-prey relationships within the 
community, and the structure of the local assemblages. 

 
The positive correlation between the biomass of predator and prey species in the assemblages of the different 
sectors reflects the role of predation pressure in the control of prey biomass. However, the moderate scores 
obtained for these correlations indicates that other factors influence this relationship, such as the distribution 
of abundance and biomass of prey species within each sector, in particular during the dry season. During this 
period, the reduction in the flooded area results in a concentration of individuals, intensifying the interactions 
among species, as well as the effects of environmental factors. During the flood period, by contrast, the 
environmental conditions are more favorable for reproduction for most species, resulting in an overall 
increase in biomass, and the recuperation of stocks for the dry season. Ward et al. [70] refer to the dry season 
as the “biological interaction phase”, due to the reduction in physical space and the availability of habitats, 
which is counterbalanced by an increase in the density of individuals and species, resulting in the 
intensification of intra- and inter-specific interactions. 

 
A number of experimental studies have found evidence that predation has a clear and predictable effect on 
the structure of prey fish populations [14, 35]. High levels of predation pressure may have a marked effect on 
the whole trophic network, including community structure [20, 48]. The reduced abundance of macrophytes 
in the study area may also have contributed to community structure, given that these plants provide a number 
of different species with sites for feeding, refuge, and breeding [71]. 

 
Ultimately, the pressure exerted by fisheries may also be considered an important determinant of community 
structure in both natural and anthropogenic environments. The analysis of the size spectrum presented here 
indicated that the populations in all the study sectors were consistent with the linear model, in which 
abundance declines gradually with increasing body size. During the dry season, slopes were steeper, reflecting 
the removal of the larger individuals with a higher economic value. These large individuals, which are captured 
selectively, are normally either predators or large-bodied herbivores, such as Cichla sp and Tometes sp. This 
results in a decrease in predation levels and a consequent increase in the abundance of prey and competition 
among these species. The more intense the pressure from fisheries, the steeper the slope and the intercept 
of the size spectrum. This occurs even where some species are migratory (Isaac, 2011, personal observation). 

 

Implications for conservation  
The results of the present study uphold the proposed hypothesis that the characteristics of the fish 
assemblages of the area influenced by the dam are affected by both random and deterministic factors. 
Differences between these two processes depend on the type of environment formed by the damming of the 
river, as well as its degree of isolation. Where space is limited, community structure is affected strongly by 
deterministic forces, such as abiotic variables and biological interactions (competition and predation). By 
contrast, in more open habitats, such as the up-and downstream sectors of the river, which present fewer 
barriers to dispersal, community structure tends to be affected by stochastic processes. However, when these 
lotic habitats become more isolated, the influence of deterministic factors will tend to increase. 
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The Araguari is one of the most important Amazonian rivers. Its headwaters lie in the Tumucumaque 
Mountains National Park, on the Guianan plateau, and much of its course lies within this conservation unit. 
The construction of new hydroelectric dams along this river is impacting the natural environment and its biota, 
in particular its fish populations (Sá-Oliveira et al, 2015). The present study has contributed to the 
understanding of these impacts, and provides important insights for the development of effective 
conservation measures and management strategies that can mitigate the impacts of the damming of the 
Araguarí, and may help ensure the maintenance of well-balanced and functional ecological communities over 
the long term.  
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Appendix 1. Fish species, their diet and status, and their maximum length (Lt cm) in the different 
sectors of the study area at UHE Coaracy Nunes during the study period. 
 

Taxa 

Maximum length (cm) in: 
Diet Status Downstr. Reserv. Lake Upstr. 

Acestrorhynchus falcatus (Bloch, 1794) 19.7    Piscivore Predator 

Acestrorhynchus falcirostris (Cuvier, 1819)  30.6 30.1 24.5 Piscivore Predator 

Ageneiosus inermis (Linnaeus, 1766) 58.7 47.0 20.0  Piscivore Predator 

Ageneiosus ucayalensis (Castelnau, 1855) 28.9 54.0 46.8 31.0 Piscivore Predator 

Auchenipterus nuchalis (Spix & Agassiz, 1829)  10.8 22.5  Piscivore Predator 

Auchenipterus osteomystax (Miranda Ribeiro, 1918) 20.0    Piscivore Predator 

Bivibranchia notata (Vari & Goulding, 1985) 19.5  16.4  Omnivore Prey 

Boulengerella cuvieri (Agassiz, 1829) 80.4 67.3 69.5 38.5 Piscivore Predator 

Brachyplatystoma filamentosum (Lichtenstein, 1819) 101.0    Piscivore Predator 

Brachyplatystoma rousseauxii (Castelnau, 1855) 53.2    Piscivore Predator 

Bryconops caudomaculatus (Günther, 1864) 14.9 11.9 11.0  Omnivore Prey 

Charax gibbosus (Linnaeus, 1758) 22.5 14.0 19.0  Piscivore Predator 

Cichla monoculus (Spix & Agassiz, 1831)  51.1 20.5  Piscivore Predator 

Cichla ocellaris (Bloch & Schneider, 1801)  52.4 29.0  Piscivore Predator 

Colossoma macropomum (Cuvier, 1818)  53.5   Omnivore Prey 

Crenicichla strigata (Günther, 1862) 21.7    Piscivore Predator 

Curimata inornata (Vari, 1989) 31.7 31.0 31.7 20.0 Detritivore Prey 

Curimata sp. (Linnaeus, 1766) 27.8    Detritivore Prey 

Curimatella dorsalis (Eigenmann & Eigenmann, 1889)  11.3   Detritivore Prey 

Cyphocharax gouldingi (Vari, 1992) 12.6 12.6 12.3  Detritivore Prey 

Dekeyseria amazônica (Rapp Py-Daniel, 1985) 13.6    Detritivore Prey 

Electrophorus electricus (Linnaeus, 1766)  66.4  92.1 Carnivore Predator 

Geophagus proximus (Castelnau, 1855) 22.5 25.1 24.0  Omnivore Prey 

Glyptoperichthys joselimaianus (Weber, 1991) 20.8 26.0   Detritivore Prey 

Harttia duriventris (Rapp Py-Daniel & Oliveira, 2001) 21.4    Detritivore Prey 

Hemiodus microlepis (Kner, 1858) 27.8 19.1 24.2  Omnivore Prey 

Hemiodus quadrimaculatus (Pellegrin, 1908) 25.3 22.0   Omnivore Prey 

Hemiodus unimaculatus (Bloch, 1794) 23.5 25.0 24.0 25.8 Omnivore Prey 

Hoplerythrinus unitaeniatus (Agassiz, 1829) 17.0    Piscivore Predator 

Hoplias aimara (Valenciennes, 1847) 55.7 37.5 60.0 59.5 Piscivore Predator 

Hoplias macrophthalmus (Pellegrin, 1907) 89.3 62.0   Piscivore Predator 

Hoplias malabaricus (Bloch, 1794)  36.0 39.4  Piscivore Predator 

Hoplosternum litoralle (Hancock, 1828) 23.0    Omnivore Prey 

Hypophthalmus marginatus (Valenciennes, 1840)   16.2  Detritivore Prey 

Hypostomus emarginatus (Valenciennes, 1840) 27.0    Detritivore Prey 

Hypostomus plecostomus (Linnaeus, 1758) 27.3 24.3 26.4 26.5 Detritivore Prey 

Laemolyta petiti (Géry, 1964)    17.7 Omnivore Prey 

Leporinus af. parae (Eigenmann, 1908) 30.0 24.2   Omnivore Prey 

Leporinus affinis (Günther, 1864) 27.2 37.6 33.5 22.5 Omnivore Prey 

Leporinus maculatus (Müller & Troschel, 1844) 19.5    Omnivore Prey 

Leptodoras sp. (Günther, 1868)    25.6 Omnivore Prey 
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Taxa 

Maximum length (cm) in: 
Diet Status Downstr. Reserv. Lake Upstr. 

Megalonema platycephalum (Eigenmann, 1912) 23.0 22.5   Piscivore Predator 

Metynnis lippincottianus (Cope, 1870) 18.0 7.5 11.9  Herbivore Prey 

Moenkhausia chrysargyrea (Günther, 1864) 14.8  8.2  Omnivore Prey 

Moenkhausia oligolepis (Günther, 1864)    8.4 Omnivore Prey 

Mylesinus paraschomburgkii (Jégu, Santos & Ferreira, 1989) 34.5    Herbivore Prey 

Mylesinus paucisquamatus (Jégu & Santos, 1988) 21.5    Herbivore Prey 

Myleus rhomboidalis (Cuvier, 1818) 44.5   38.1 Omnivore Prey 

Myleus rubripinnis (Müller & Troschel, 1844) 30.5    Herbivore Prey 

Mylossoma duriventre (Cuvier, 1818) 28.0    Omnivore Prey 

Osteoglossum bicirrossum (Cuvier, 1829) 69.3    Piscivore Predator 

Pachypops fourcroi (La Cepède, 1802) 14.5  17.2  Piscivore Predator 

Parauchenipterus galeatus (Linnaeus, 1766)  20.0  15.5 Carnivore Predator 

Parauchenipterus sp. (Kner, 1858) 24.0    Carnivore Predator 

Peckoltia oligospila (Günther, 1864) 22.5    Detritivore Prey 

Pellona castelnaeana (Valenciennes, 1847) 32.5    Carnivore Predator 

Pellona flavipinnis (Valenciennes,1836) 15.7    Carnivore Predator 

Piaractus brachypomus (Cuvier, 1818) 55.5    Omnivore Predator 

Pimelodella cristata (Müller & Troschel, 1848)  23.0   Carnivore Predator 

Pimelodus blochii (Valenciennes, 1840) 24.5 24.1 22.2  Omnivore Predator 

Pimelodus ornatus (Kner, 1858) 39.5 31.5 38.5 30.0 Piscivore Predator 

Plagioscion auratus (Castelnau, 1855) 22.0    Piscivore Predator 

Plagioscion squamosissimus (Heckel, 1840) 41.6    Piscivore Predator 

Platynematicthys notatus (Jardine, 1841) 39.0    Piscivore Predator 

Psectrogaster af. falcata (Eigenmann & Eigenmann, 1889) 21.7 32.7 33.5 22.8 Detritivore Prey 

Pseudacanthicus spinosus (Castelnau, 1855) 32.5    Detritivore Prey 

Pygopristis denticulata (Cuvier, 1819) 10.9    Carnivore Predator 

Retroculus lapidifer (Castelnau, 1855) 29.5    Omnivore Prey 

Roeboides affinis (Günther, 1868) 20.3 16.4 15.8 13.5 Piscivore Predator 

Satanoperca acuticeps (Heckel, 1840) 18.5 18.0 11.2  Omnivore Prey 

Schizodon vittatus (Valenciennes, 1850) 19.5    Herbivore Prey 

Serrasalmus elongatus (Kner, 1858) 24.1    Carnivore Predator 

Serrasalmus gibbus (Castelnau, 1855) 35.0 25.0 20.0 22.0 Carnivore Predator 

Serrasalmus rhombeus (Linnaeus, 1766) 41.2 32.0 33.5 43.0 Carnivore Predator 

Sternopygus macrurus (Bloch & Schneider, 1801)   39.0  Carnivore Predator 

Tetragonopterus chalceus (Spix & Agassiz, 1829)  22.5   Omnivore Prey 

Tometes trilobatus (Valenciennes, 1850) 46.0 47.6   Herbivore Prey 

Triportheus albus (Cope, 1872) 17.0    Omnivore Prey 

Triportheus angulatus (Spix & Agassiz, 1829)  25.3 23.3 22.0 Omnivore Prey 

Triportheus auritus (Valenciennes, 1850) 21.6 23.0 23.0 24.0 Omnivore Prey 

Triportheus trifurcatus (Castelnau, 1855) 21.9    Omnivore Prey 


