Research Article

Avian distribution and life-history strategies in Amazonian terra-firme and floodplain forests

Sil Henricus Johannes van Lieshout¹*, Christopher Alexander Kirkby² and Henk Siepel¹

¹ Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

² Fauna Forever, Avenida Aeropuerto KM 1, La Joya, Puerto Maldonado, Madre de Dios, Peru

*Corresponding author: sil@jennis.nl

Abstract

The diversity of avian populations in the Madre de Dios region of Peru is currently threatened by deforestation and other anthropogenic factors. In this study we assessed differences in bird species composition in two major types of tropical forests: floodplain and terra-firme forest. Abundance of groups of behaviourally similar species showed a higher presence of certain feeding guilds in either floodplain forests or terra-firme forest, whereas no difference in species richness was found. Analysis of the relative reproductive investment (RRI) of these tropical birds showed significant differences between habitats and among families and feeding guilds. Comparison of these families and feeding guilds to their relatives in temperate regions showed that neotropical birds have a smaller RRI, due to both smaller clutch sizes and lower egg mass, even when there are more broods per season. Quantification of RRI as used in this study can be useful to indicate bird species' susceptibility to anthropogenic factors in various habitats.

Keywords: tropical birds, Neotropical forest, avian distribution, relative reproductive investment, conservation

Received: 5 January 2016; Accepted 9 February 2016; Published: 28 March 2016

Copyright: Sil Henricus Johannes van Lieshout, Christopher Alexander Kirkby and Henk Siepel. This is an open access paper. We use the Creative Commons Attribution 4.0 license http://creativecommons.org/licenses/by/3.0/us/. The license permits any user to download, print out, extract, archive, and distribute the article, so long as appropriate credit is given to the authors and source of the work. The license ensures that the published article will be as widely available as possible and that your article can be included in any scientific archive. Open Access authors retain the copyrights of their papers. Open access is a property of individual works, not necessarily journals or publishers.

Cite this paper as: van Lieshout, S. H. J., Kirkby, C. A. and Siepel, H. 2016. Avian distribution and life-history strategies in Amazonian terra-firme and floodplain forests. *Tropical Conservation Science* Vol. 9 (1): 465-502. Available online: www.tropicalconservationscience.org

Disclosure: Neither Tropical Conservation Science (TCS) or the reviewers participating in the peer review process have *an* editorial influence or control over the content that is produced by the authors that publish in TCS.

Introduction

Deforestation and many other anthropogenic factors currently threaten tropical rainforests, the richest terrestrial ecosystem on the planet [1,2]. Human activities affect the ecological integrity of the forest by changing carbon storage, river flow, water balance, and even the amelioration of infectious diseases [2-4]. Tropical rainforests consist of various habitats, including terra-firme forest and floodplain forest, which are affected differently by anthropogenic factors [5-7]. Different land access and use of oligotrophic terra-firme forest has resulted in dissimilar trophic cascades and human activities compared to eutrophic floodplain forests. As rainforests are one of the most biodiverse habitats on the planet, many different species are affected by these anthropogenic factors [2]. Among these are around four thousand species of birds that play important roles in the various habitats as top predators, pollinators, and seed dispersers [8]. Species composition of avian populations is likely to differ between terra-firme forest and floodplain forest, and despite studies in both terra-firme forest and floodplain forest, the differences in avian populations between these habitats are still poorly understood. This novel research assesses some of these differences [9-12].

The terra-firme forest is rainforest that is not inundated or flooded by rivers and is characteristic of upland forests. These forests are noticeably taller and more diverse (>400 tree species/hectare in some areas) than floodplain forest. They are found only on dry, well-drained soils and are characterized by many tropical hardwood trees [13]. Moreover, the tall Amazonian terra-firme forests enhance a larger vertical stratification within the bird community, where species of the different layers are more likely to forage in their respective storeys and thus in narrower strata [14].

Floodplain forests, on the other hand, are flooded seasonally and have relatively rich soils from the annual replenishment of nutrients from white-water rivers. In the Amazon, vast areas of such rainforests can be found. Floodplain forests, especially those located on river banks and islands, are often short-lived due to the meandering nature of tropical lowland

rivers, which eat away at the forests' base. Tropical floodplain forests are one of the most productive ecosystems and harbour a great diversity of (tree)species, if lower on average than terra-firme forest. Although aboveground woody biomass is consistently lower than terra-firme forests, biomass accumulation is high due to deposition of nutrient-rich sediments [15]. These diverse abiotic conditions might enhance a diverse avian species composition in floodplain forests. Both terra-firme and floodplain forests are rapidly disappearing due to deforestation for development of agricultural lands, gold mining, and cattle ranching [2].

Avian diversity is likely to differ between these habitats as the incidence of flowering and fruiting is much lower in terra-firme forests than in other neotropical forest habitats, possibly influencing the abundance of specific species(guilds) like frugivores and nectarivores [16]. Other species might flourish in terra-firme forest, such as mixed-species flock insectivores, especially leaf-gleaning insectivores that congregate in food-rich areas [17].

Bird species that prefer specific habitats might be severely affected by increasing deforestation. Analysis of life-history traits could identify species that are more susceptible to these anthropogenic factors. To compare the reproductive investment of species in various guilds in the two forest types, we used the Relative Reproductive Investment (RRI) [18]. The latter value, which uses clutch size, egg mass, and the number of clutches per season in relation to female body mass, gives an indication of annual reproductive effort. This effort is a good proxy for adult mortality levels, which are hard to obtain in these kind of biotopes. Adult mortality determines a species' vulnerability to human impact, because when adult mortality is low (and thus also the RRI is low), additional mortality due to human impact can have more severe consequences to population levels compared to species with high reproductive effort (and usually already higher adult mortality).

In this paper, we address the following questions; (a) What is the difference in avian diversity among terra-firme forests and floodplain forests, and what are the possible causes? (b) What difference in life-history-traits, especially the RRI, exists between species in terra-firme forest and floodplain forest? (c) How do these differences in life-history traits relate to birds in temperate regions, in order to present a bigger reference for these RRI values?

Methods

Study area

This study was conducted within the Madre de Dios region of Peru at 18 sites of similar size: Fauna Forever House (AFF-House), Amazon Rainforest Conservation Center (ARCC), Rio Azul Ranger Station (AZUL), El Gato Homestay (BAL), Bozovitch Concession (BOZ), Chuncho Clay Lick (CHUN), Los Amigos Research Center (CICRA), Explorer's Inn (EI), Limon Concession (LIMON), Malinowski Ranger Station (MALI), Campamento Pampa (PAMPA), Las Piedras Biodiversity Station (PIE), Reserva Amazonica Lodge (RA), Saona Lodge (SAONA), Sachavacayoc Centre (SC), Tambopata Ecolodge (TPL), Tambopata Research Center (TRC) and Wasai Lodge (WASAI). All of the sites are rainforest areas in the Amazon Basin, and six of them are located within the protected area complex of the Tambopata National Reserve and Bahuaja Sonene National Park (Fig. 1).

Fig. 1: Map of sampling sites in the Madre de Dios region, Peru. All of the sites are within the Amazon Basin and six are within the protected area complex of the Tambopata National Reserve and Bahuaja Sonene National Park.

Distribution of avian populations using mist-netting

Eighteen sites with either floodplain or terra-firme forest were studied (Appendix 1), six of which are located within the protected area complex of the Tambopata National Reserve and Bahuaja Sonene National Park. Each site sampled with mist-nets covers a representative area of about 2,500 ha.

Birds were sampled by using mist-nets, which was justified as it allows similar and simultaneous sampling of various sites. Three mist-nets (each 12 m long, 3.5 m high, 5 shelves, and mesh size 36 mm) were placed consecutively (in a straight line) to provide a total net length of 36 m per sample point. At each site, sample points were located 50-300 m (mean 200 m) apart, for a total of 3-42 points per site. Sampling was spread over a five-year period (2009-2014), with 3-73 sample days per site. Intervals when no data was collected varied among sample periods at sites, and some sites were only sampled once during the aforementioned five-year period. During a mist-net operation at a site, nets were opened at three sample points simultaneously for the first few hours after dawn for three days. Netting-days were not always consecutive, due to weather conditions (sampling did not occur on rainy or very windy days). Open mist-nets were checked at least every half hour, and all captured birds, with the exception of hummingbirds, were banded with a numbered ring. After banding, female birds (based on plumage, cloacal protuberance and brood patch) were weighed. New captures and recaptures were recorded, although recaptures on the same day were released immediately.

Mist-nets focus on understory birds, but do not sample birds randomly [19-22]. As the effectiveness of mist-nets differs among different species, in this study only the capture rates of groups of behaviourally similar species were compared [19-21]. Therefore birds were

divided into guilds based on previous ecological classification [14,16,21,23]. Guilds included army ant followers (AA), solitary insectivores (I), solitary insectivore-frugivores (IF), mixed-species insectivore flocks (MFI), solitary frugivores (F), solitary frugivore-insectivores (FI), mixed-species insectivore-frugivore flocks (MFIF), and small vertebrates and large insects (SVLI) (Appendix 2 & 3).

Analysis

Capture rates were used as an index of abundance and presented as captures/1,000 nethours, where a net-hour refers to 12 m of net open for one hour. Recaptures of birds during the same day were excluded. Species richness of the different habitats was determined with the program EstimateS (<u>http://viceroy.eeb.uconn.edu/estimates/</u>), using the classic formula for Chao 1 & Chao 2. Non-parametric richness and diversity estimators (MM Means, Jackknife, Chao, Bootstrap, ICE, Shannon and Simpson) were also assessed with EstimateS. Species richness estimators based on incidence data were Chao 2 and ICE, where the latter calculated the proportion of 'infrequent' species that were not 'unique'. Jackknife 1 and 2 used both incidence and abundance data: Jackknife 2 used both 'uniques' and 'duplicates' and Jackknife 1 only 'uniques', but in combination with observed amount of species either corrected for repeated samples in incidence data. Chao 2 only used different factors for repeated sampling compared to Jackknife 2. Chao 1 and Bootstrap used abundance data again with 'uniques' and 'duplicates', but the Bootstrap estimator is based on the frequency distribution of the species found [24]. Diversity of species was assessed through the Shannon [25] and Simpson index [26].

Chi-square test of independence was performed to determine habitat specialists in terra-firme and floodplain forest. For analysis of capture rates between terra-firme forest and floodplain forest, which occurred per feeding guild, independent t-tests were conducted in SPSS (Version 16.0).

To get a comprehensive and comparable measure of reproductive investment, life-history traits like clutch size (\hat{c}), number of clutches per season (N_c) and egg mass (m_{egg}), divided by the female body mass (m_{female}) were used to assess the Relative Reproductive Investment (RRI) according to the following formula: RRI = ($\hat{c}^*N_c^*m_{egg}$)/ m_{female} [18]. Values were assessed for every individual species, to compare differences among habitats, between feeding guilds and phylogenetically related groups. For comparison with outlier values, data of life-history traits of West-European birds were included among phylogenetically related groups and among feeding guilds as well. Mann-Whitney U tests and Independent t-tests (SPSS, Version 16.0) were conducted to assess significant differences in life-history traits between related groups.

Results

Avian diversity in terra-firme and floodplain forests

After a total of 11,205 mist-net hours, 188 and 118 bird species were found in floodplain and terra-firme forests respectively. The species accumulation curves for the floodplain forest and terra-firme forest are presented in Figure 2. The x-axis is scaled by the number of accumulated samples and compares species density between the forest types. The species accumulation curves for the two habitats did not approach an asymptote, but the rate of accumulation of species with increasing sample numbers is decreasing (Fig. 2).

The floodplain forest has fewer species at comparable levels of sample accumulation. The number of species at 64 pooled samples (the maximum sample size of terra-firme forest) was 118 and 109.4 species for terra-firme forests and floodplain forest respectively. Accordingly, the observed species accumulation curve of the floodplain forest was within the 95% confidence intervals of the corresponding species accumulation curve of terra-firme forest, indicating no significant difference in species richness between floodplain forest and terra-firme forest.

Fig. 2: Species accumulation curves. Grey line represents species richness in terra firme forest, black line in floodplain forest. Continuous lines surrounded by dashed lines represent cumulative number of species and confidence intervals of the respective habitats.

More samples were taken from floodplain forests, with more observed species than in terrafirme forest (Table 1). Non-parametric species richness estimators for incidence and abundance data estimated the species richness of the two habitats (Table 1). The differences between the highest and lowest species estimators were 71.47 for floodplain forest (n=353), 47.11 for floodplain forest (n=64) and 42.29 for terra-firme forest.

A total of 90 unique bird species were present in floodplain forest, and 20 unique species in terra-firme forest; 98 species were present in both habitats. Of course, a higher species richness in floodplain forest was found due to the greater number of samples; at the maximum sample size of terra-firme forest (n=64), species richness of almost all estimators, except for Chao 2, were higher in terra-firme forest. Diversity estimators were higher in terra-firme forest at all sample sizes (Table 1).

Estimation of preference of various bird species for specific habitats occurred by comparing abundance data in floodplain and terra-firme forests. Habitat associations were detected in 60 species (Appendix 4), chi-square tests showed that 30 species preferred floodplain forest and 30 terra-firme forest.

Preferences of certain feeding guilds for floodplain forest and terra-firme forest were estimated: solitary frugivore-insectivores (FP=3; TF=0) and mixed species flock insectivores (FP=7; TF=3) had more habitat specialists present in floodplain forest. Habitat specialists of solitary insectivores (FP=4; TF=17) preferred terra-firme forest.

Table 1: Species richness estimators. Number of samples and individuals, species observed and species richness (MM means, Chao 1, Chao 2, Jackknife 1, Jackknife 2, Bootstrap and ICE) and diversity (Shannon and Simpson) estimate values for floodplain and terra-firme forests.

	Floodpla	in Forest	Terra Firme Forest
No. of samples	353	64	64
No. of Individuals	3,285	711.3±0.29 54	
Sobs	188	79.4±1.28	118
Unique species	90	19.9±0.03	20
	Rich	ness	
MM Means	192.3	144.68	161.87
Chao 1	224.74±14.88	147.68±16.86	153.96±15.61
Chao 2	242.41±20.75	160.74±21.04	157.57±15.91
Jackknife 1	236.86±7.88	151.91±8.10	160.33±6.74
Jackknife 2	263.77	175.53±15.33	180.06
Bootstrap	210.07	128.42±7.51	137.77
ICE	231.46	156.51±15.39	163.59±0.02
	Dive	rsity	
Shannon Index	4.16	3.98±0.08	4.26
Simpson Index	26.79	25.82±3.5	46.67

Fig. 3: Abundance per sampling effort of various feeding guilds compared between floodplain (FP) and terra-firme forest (TF). See Table 2 for abbreviations of feeding guilds. Fault bars indicate Standard Error, **= P<0.01.

Abundances for the various feeding guilds per 1,000 mist-net hours (Fig. 3) showed significant differences among certain guilds. Significantly more present in floodplain forests were frugivores (Independent t-test, P=0.005) and insectivore-frugivores (Independent t-test, P=0.002), and a trend was shown by army-ant followers (Independent t-test, P=0.053). An opposite trend was found with insectivores (Independent t-test, P=0.072), which were more abundant in terra-firme forests.

Life-history traits of tropical bird populations

Average values of the specific life-history traits used to calculate the relative reproductive investment (RRI) have been estimated for the species in various families and feeding guilds (Table 2; Appendix 5 & 6).

Table 2: Average value (with standard error) for specific life-history traits of tropical birds, in various feeding guilds	, used in
the calculation of the relative reproductive investment.	

	Clutch size	Broods per season	Egg mass (g)	Female body mass (g)	RRI
AA	1.80(0.09)	2	7.05	52.16(3.66)	0.332
F	2.38(0.03)	2.12(0.02)	4.29(0.37)	41.90(2.14)	0.588(0.056)
FI	2.36(0.02)	1.77(0.03)	6.18(0.32)	88.65(4.77)	0.474(0.064)
I	2.29(0.01)	1.94(0.01)	4.10(0.06)	29.42(0.31)	0.629(0.034)
IF	2.81(0.05)	1.85(0.02)	4.90(0.16)	49.39(1.90)	0.551(0.062)
MFI	2.15(0.02)	1.97(0.01)	2.84(0.17)	22.15(0.36)	0.675(0.099)
MFIF	3.00	2	5.25(1.45)	97.88(45.5)	0.270
Ν	2.00	2	0.63(0.02)	4.950(0.07)	0.526(0.038)
SVLI	2.93(0.11)	1	13.7(1.94)	121.3(12.5)	0.376(0.064)

Feeding guilds based on classification in Henriques et al. [16]. AA = army ant followers, F = solitary frugivores, FI = solitary frugivore-insectivores, I = solitary insectivores, IF = solitary insectivore-frugivores, MFI = mixed species insectivore flocks, MFIF = mixed species insectivore-frugivore flocks, N = nectarivores, SVLI = small vertebrates and large insects.

Birds of different feeding guilds in the tropics all had similar clutch sizes and number of broods per season, so the difference in RRI was the result of egg and female body mass. For nectarivores, mostly hummingbirds, egg mass and female body mass were small. For frugivores these values were higher than in insectivores, resulting in an average lower RRI for frugivores than for insectivores (Table 2 & 3).

Estimation of the relative reproductive investment (RRI) has been calculated based on several life-history traits (Appendix 2 & 3). RRI was calculated per individual species and was combined per family and per feeding guild (Appendix 5 & 6). In the tropical regions, there was a broad range of RRI-values (0.253-0.814) among families with significant differences (Kruskal-Wallis: P=0.001). Among feeding guilds a trend was present (Kruskal-Wallis: P=0.079). In temperate regions significant differences were found in RRI-values both among families (Kruskal-Wallis: P<0.001) and feeding guilds (Kruskal-Wallis: P<0.001) (Appendix 5 & 6).

RRI among bird species with a preference for floodplain forest or terra-firme forest within feeding guilds was compared (Table 3). Only frugivores showed a significant higher RRI in floodplain forest compared to similar species in terra-firme forest (P=0.016; independent t-test) (Table 3). For comparison of life-history traits and RRI between the tropical and temperate region, families and feeding guilds present in both regions were compared (Table 4).

	Floodplain forest	Terra firme forest	T-test	Mann-Whitney
				U-test
F	0.724(0.074)	0.345(0.079)	<i>P</i> =0.016	
FI	0.614(0.029)			
I	0.642(0.085)	0.633(0.044)	<i>P</i> =0.922	
IF	0.457(0.015)			
MFI	0.556(0.100)	0.401		<i>P</i> =0.667
Ν	0.578(0.132)	0.509		<i>P</i> =1.000
SVLI	0.572(0.025)			

Table 3: Comparison of RRI from habitat specialists within feeding guilds. Average values (with Standard Error) and P-values for independent t-test and Mann Whitney U test are shown. See Table 2 for abbreviations of feeding guilds.

Table 4: Comparison of relative reproductive investment between similar families and feeding guilds in the tropical and temperate regions. Average value (with Standard Error) is shown. Mann-Whitney U test and Independent T-test show significance of difference between these regions. See Table 2 for abbreviations of feeding guilds.

Family	Tropical	Temperate	T-test	Mann-Whitney
				U-test
Alcedinidae	0.572(0.025)	1.435		<i>P</i> =1.000
Columbidae	0.297(0.062)	0.290(0.096)	<i>P</i> =0.950	
Cuculidae	0.814	0.279		<i>P</i> =1.000
Emberizidae	0.666(0.071)	0.991(0.077)	<i>P</i> =0.017	
Falconidae	0.304(0.037)	0.373		<i>P</i> =1.000
Picidae	0.270	0.407(0.073)	<i>P</i> =0.508	
Troglodytidae	1.099(0.074)	2.030		<i>P</i> =1.000
Turdidae	0.585(0.059)	0.978(0.123)	<i>P</i> =0.012	
Feeding guild	Tropical	Temperate	T-test	
F	0.587(0.055)	0.491(0.103)	P=0.399	
I	0.628(0.034)	0.810(0.070)	<i>P</i> =0.024	
IF	0.550(0.061)	0.770(0.069)	<i>P</i> =0.023	
MFI	0.675(0.099)	1.317(0.318)	<i>P</i> =0.051	
MFIF	0.270	1.213(0.327)	<i>P</i> =0.305	
SVLI	0.376(0.064)	0.412(0.041)	<i>P</i> =0.649	

Life-history data in the tropical regions and in the temperate regions could be found only for the families presented in table 4. For Emberizidae and Turdidae, a significant (P<0.05; independent t-test) difference between species in the tropics and temperate regions was found. In both families, species in the temperate regions have a higher RRI than related species in the tropics (Table 4).

Comparison of feeding guilds resulted in a significant difference between temperate and tropical regions for all insectivore-guilds: the RRI-value was higher in the temperate regions for insectivores, insectivore-frugivores, and mixed species flock insectivores. Other feeding guilds did not show a significant different RRI-value between these regions (Table 4). Army ant followers and nectarivores were not present in temperate regions.

	()/ 00	0 1007	,	0 (00	
		ĉ	Nc		m _{egg}		m _{femal}	le
	Tropical	Temperate	Tropical	Temperate	Tropical	Temperate	Tropical	Temperate
Emberizidae	2.49(0.15)	4.45(0.21)	2	1.93(0.07)	1.94(0.27)	2.90(0.38)	16.34(2.66)	5.85(4.99)
Turdidae	2.73(0.33)	5.17(0.21)	2	1.77(0.19)	5.89(0.79)	3.75(0.62)	60.28(5.84)	3.58(11.2)
I	2.29(0.11)	4.78(0.24)	1.94(0.03)	1.39(0.08)	4.10(0.42)	12.0(2.46)	29.42(2.79)	110(22.1)
IF	2.81(0.19)	5.45(0.25)	1.85(0.08)	1.37(0.09)	4.90(0.57)	11.4(3.32)	49.39(8.48)	174(59.6)
MFI	2.16(0.11)	4.59(0.61)	1.97(0.03)	2.78(0.17)	2.84(0.57)	3.04(0.16)	22.15(2.12)	4.31(1.19)

Table 5: Average value (with SE) of life-history traits used in calculation for RRI. Average clutch size (\hat{c}), Number of broods per season (N_c) Egg mass in grams (m_{egg}) and Female body mass in grams (m_{female}). See Table 2 for abbreviations of feeding guilds.

The basic life-history traits in the significantly different RRIs for families and feeding guilds showed that in all situations temperate clutches were larger and number of clutches hardly differed in Emberizidae and Turdidae, but was lower in temperate insectivores and insectivore-frugivores and higher in mixed species flock insectivores. Egg mass was lower in the tropics in all insectivorous feeding guilds and Emberizidae, but not in Turdidae where female body masses were much higher (Table 5).

Discussion

The variation in distribution of all tropical bird species in the Madre de Dios region might be due to specific abiotic factors within the floodplain and terra-firme forest. Although no significant difference was found in species richness and diversity, a trend suggested that these estimators were higher in terra-firme forest. This is in line with the idea that there is more stratification in terra-firme forest, as trees are taller, and more diversity and density of trees create more available niches for various bird species [13]. On the other hand, for most feeding guilds numbers are higher in the floodplain forest, so productivity may be higher there than in terra-firme forest (Fig. 3). Habitat associations were found for a large number of species that preferred either floodplain or terra-firme forest. Frugivore-insectivores and mixed species flock insectivores had more habitat specialists in floodplain forest, whereas insectivores had more in terra-firme forest. Comparison of total avian populations where division was based on feeding guilds showed a higher abundance of frugivores and insectivorefrugivores in floodplain forests, possibly because there is more flowering and fruiting of plants in floodplain forests [17], although for nectarivores no difference was found. Solitary insectivores, on the contrary, preferred terra-firme forests where the high diversity of trees is a source for a wide variety of insects [13].

Abundance of specific bird populations in habitats indicates an important role for different food availability in terra-firme and floodplain forest. Munn and Terborgh [17] and Henriques et al. [16] already suggested that insectivores were likely to be more abundant in terra-firme forest and frugivores more abundant in floodplain forest. This study supports those suggestions, with these specific feeding guilds being more abundant in their respective habitats. These habitats are threatened by deforestation, which increases fragmentation of areas and is detrimental to various bird species [27]. According to Gray et al. [10] insectivores and frugivores are the feeding guilds most prone to forest disturbance. As terra-firme and floodplain forests are severely reduced by deforestation in the Amazon, abundance of these feeding guilds is likely to decrease, affecting both trophic organization and ecological functioning of these areas. This ecological study was a pilot, as for certain species only trends

have become visible a larger scale study might more precisely determine species composition within these habitats. Such future research could also include monitoring of food availability within these habitats to define habitat-feeding guild relationships with more power.

Comparison of the values for life-history traits, especially the RRI, among the various feeding guilds within the tropics showed differences, as frugivores had a relatively low relative reproductive investment compared to insectivores. Significant differences in RRI were found not only among feeding guilds but also among families, resulting in different tactics of reproduction and survival of these avian populations.

Floodplain forests are fast-changing habitats for tropical birds due to flooding, biomass deposition from rivers, and secondary growth of the forest. These conditions seemed to lead to a higher RRI-value, as has been reported for frugivores, than for similar species in terrafirme forest. Other feeding guilds showed a similar trend, but due to lack of values of lifehistory traits for a number of species, numbers were quite low to base a conclusion on. The increased RRI in floodplain forest compared to terra-firme forest indicates a shift in the balance of reproduction and survival towards higher reproduction, made possible by the more nutrient-rich conditions in the floodplains, probably compensating for a higher risk of loss of either broods or higher juvenile and/or adult mortality due to flooding, for instance. Neotropical families of birds, especially those with low RRI, are more prone to deforestation and other environmental changes as these species do not easily compensate for increased adult mortality. Species composition of avian populations in terra-firme forests consists of birds with a relatively low relative reproductive investment, which are more susceptible to these anthropogenic impacts from, for example, deforestation.

It has been long recognized that tropical birds differ fundamentally from temperate zone birds in their life-history traits. Tropical birds have high nest predation, high adult survival, and small clutch sizes [28,29]. Various other studies have questioned the validity of these differences [30,31]. This study showed that the RRI for comparable groups of behaviourally similar species is in most cases higher for species in the temperate regions than in the tropical regions. Significant differences were found between Emberizidae and Turdidae and insectivorous feeding guilds, in all of which the RRI was higher in the temperate species. As nest predation is high in tropical birds, these species invest less in offspring, resulting in a lower RRI; they may therefore have lower adult mortality and can spread the risks of failed broods over a longer time. In other words one may state that spring in the temperate regions gives the possibility of an increased investment in reproduction, due to its increased biomass production. The downside being the increased risk of either surviving winter or facing the costs and risks of migration.

Tropical birds have smaller clutches than temperate zone birds, which is in line with other studies [32,33]. Larger clutch sizes have reduced food delivery, higher predation risk, and lower juvenile recruitment. In temperate regions, the food limitation hypothesis suggests that daylength in temperate regions allows these birds to gather more food to sustain larger clutches [34]. Growth rate in the tropics is slower [35] and food delivery rates are low [36]. Most tropical birds will renest after a first brood failure or have multiple broods per season, especially as in the tropics a relatively high nest predation is present as about 80% of the nests are lost to predators [29,36]. This number is so high because there is a large number and

diversity of nest predators in the tropics [32,37]. Tropical birds seem to invest less in their offspring, as the egg mass of tropical species is lower compared to temperate species. Female body mass as such varies extremely, without clear patterns. Because tropical birds have a lower RRI and invest less in their offspring due to higher predation risk, food limitation, and spreading the risk over the years, their naturally higher adult survival renders them extra vulnerable to increased adult mortality from anthropogenic influences.

Fig. 4: Some bird species from the Amazon Basin within the Tambopata National Reserve and Bahuaja Sonene National Park. A. Band-tailed Manakin (Pipra fasciicauda) B. American Pygmy-kingfisher (Chloroceryle aenea) C. Plumbeous antbird (Myrmeciza hyperythra) D. Green-and-gold Tanager (Tangara schrankii) (All photos by Alexis Diaz Campo).

Implications for conservation

Understanding distribution differences of behaviourally similar species among tropical forest types is important for identifying bird species prone to anthropogenic factors, as these forests are currently subjected to deforestation and fragmentation. The results in this study show specific foraging groups to be more abundantly present in either terra-firme or floodplain forests (Fig. 4). The species-specific life-history traits of these birds show that the relative reproductive effort is lower in terra-firme forest species. Which means that birds here invest less in reproduction and more in adult survival, these birds cannot compensate for the high adult mortality caused by deforestation, whereas floodplain forest species invest more in reproduction and can better cope with such anthropogenic factors. These values for

distribution and relative reproductive investment are important in understanding the differences in the ability of birds to cope with environmental changes and is therefore advised to be used in conservation activities.

Acknowledgements

Special thanks to A. Diaz Campo and L. Cueto for their field assistance and critically reviewing this study, and thanks to all the interns and staff at Fauna Forever and the Department of Animal Ecology and Ecophysiology for their help in our research.

References

- [1] Nepstad, D.C., Verissimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M. and Brooks, V. 1999. Large-scale impoverishment of Amazonian rainforests by logging and fire. *Nature* 398:505-508.
- [2] Foley, J.A., Asner, G.P., Costa, M.H., Coe, M.T., DeFries, R., Gibbs, H.K., Howard, E.A., Olson, S., Patz, J., Ramankutty, N. and Snyder, P. 2007. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. *Frontiers in Ecology and the Environment* 5:25-32.
- [3] Costa, M.H. and Foley J.A. 1997. Water balance of the Amazon Basin: Dependence on vegetation cover and canopy conductance. *Journal of Geophysical Research* 102:973-989.
- [4] Costa, M.H. and Foley, J.A. 2000. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. *Journal of Climate* 13:18-34.
- [5] Junk, W.J., Bayley, P.B. and Sparks, R.E. 1989. The flood pulse concept in river-floodplain systems. *Canadian Journal of Fisheries and Aquatic Sciences* 106:110–127.
- [6] Johnson, E.I., Stouffer, P.C. and Vargas, C.F. 2011. Diversity, biomass, and trophic structure of a central Amazonian rainforest bird community. *Revista Brasileira de Ornitologia* 19:1-15.
- [7] Nichols, E., Uriarte, M., Peres, C.A., Louzada, J., Braga, R.F., Schiffler, G., Endo, W. and Spector, S.H. 2013. Human-Induced trophic cascades along the fecal detritus pathway. *PLoS Biology* 8:1-10.
- [8] Dirzo, R. and Raven, P.H. 2003. Global state of biodiversity and loss. *Annual Review on Environment and Resources* 28:137–67.
- [9] Gabbe, A.P., Robinson, S.K. and Brawn, J.D. 2002. Tree-species preferences of foraging insectivorous birds: implications for floodplain forest restoration. *Conservation Biology* 16: 462-470.
- [10] Gray, M.A., Baldauf, S.L., Mayhew, P.J. and Hill, J.K. 2007. The response of avian feeding guilds to tropical forest disturbance. *Conservation Biology* 21:133-141.
- [11] Laranjeiras, T.O., Naka, L.N., Bechtoldt, C.L., da Costa, T.V.V., Andretti, C.B., Cerqueira, M.C., de Fatima Torres, M., Rodrigues, G.L., Santos, M.P.D., Vargas, C.F., Pacheco, A.M.F., Sardelli, C.H., Mazar-Barnett, J. and Cohn-Haft, M. 2014. The avifauna of Virua National Park, Roraima, reveals megadiversity in northern Amazonia. *Revista Brasileira de Ornitologia* 22:138-171.
- [12] Beja, P., Santos, C.D., Santana, J., Pereira, M.J., Marques, J.T., Queiroz, H.L. and Palmeirim, J.M. 2010. Seasonal patterns of spatial variation in understory bird assemblages across a mosaic of flooded and unflooded Amazonian forests. *Biodiversity and Conservation* 19:129-152.

- [13] Aleixo, A. 2004. Historical diversification of a Terra-Firme forest bird superspecies: A phylogeographic perspective on the role of different hypotheses of Amazonian diversification. *Evolution* 58:1303-1317.
- [14] Wunderle, J.M., Willig, M.R. and Henriques, L.M.P. 2005. Avian distribution in treefall gaps and understorey of terra firme forest in the lowland Amazon. *Ibis* 147:109-129.
- [15] Lucas, C.M., Schöngart, J., Sheikh, P., Wittmann, F., Piedade, M.T.F. and McGrath, D.G. 2014. Effects of land-use and hydroperiod on aboveground biomass and productivity of secondary Amazonian floodplain forests. *Forest Ecology and Management* 319:116-127.
- [16] Henriques, L.M.P., Wunderle, J.M. Jr. and Willig, M.R. 2003. Birds of the Tapajós National Forest, Brazilian Amazon: a preliminary assessment. *Ornitologia Neotropica* 14:307–338.
- [17] Munn, C.A. and Terborgh, J.W. 1979. Multi-species territoriality in Neotropical foraging flocks. *The Condor* 81:338–347.
- [18] Van Turnhout, C.A.M., Leuven, R.S.E.W., Hendriks, A.J., Kurstjens, G., van Strien, A.J., Foppen, R.P.B. and Siepel, H. 2012. Ecological strategies successfully predict the effects of river floodplain rehabilitation on breeding birds. *River Research and Applications* 28:269-282.
- [19] Karr, J.R. 1981. Surveying birds with mist nets. *Studies in Avian Biology* 6:62–67.
- [20] Bierregaard, R. O. Jr. 1990a. Avian communities in the understory of Amazonian forest fragments. In: *Biogeography and Ecology of Forest Bird Communities*, pp. 333-343. SPB Academic Publishing, The Hague.
- [21] Bierregaard, R. O. Jr. 1990b. Species composition and trophic organization of the understory bird community in a Central Amazonian terra firme forest. In: *Four Neotropical Rainforests*, pp. 217-236. Yale University Press, New Haven.
- [22] Remsen, J.V. Jr. and Good, D.A. 1996. Misuse of data from mistnet captures to assess relative abundance in bird populations. *The Auk* 113:381–398.
- [23] Schulenberg, T.S., Stotz, D.F., Lane, D.F., O'Neill, J.P. and Parker, T.A. 2010. *Birds of Peru: revised and updated edition.* Princeton University Press, Princeton.
- [24] Gotelli, N.J. and Colwell, R.K. 2011. Estimating species richness. *Biological diversity: Frontiers in measurement and assessment* 12:39-54.
- [25] Shannon, C. 1948. A mathematical theory of communication. *The Bell System Technical Journal* 27:379–423.
- [26] Simpson, E.H. 1949. Measurement of diversity. *Nature* 163:688.
- [27] Stratford, J.A. and Stouffer, P.C. 1999. Local extinctions of terrestrial insectivorous birds in a fragmented landscape near Manuas, Brazil. *Conservation Biology* 13:1416-1423.
- [28] Lack, D. 1947. The significance of clutch-size. *Ibis* 89:302-352.
- [29] Fogden, M.P.L. 1972. The seasonality and population dynamics of equatorial forest birds in Sarawak. *Ibis* 114:307-343.
- [30] Karr, J.R., Nichols, J.D., Klimkiewicz, M.K. and Brawn, J.D. 1990. Survival rates of birds of tropical and temperate forests: will the dogma survive? *The American Naturalist* 136:277-291.
- [31] Martin, T.E. 1996. Life history evolution in tropical and south temperate birds: what do we really know? *Journal of Avian Biology* 27:263-272.
- [32] Skutch, A.F. 1985. Clutch size, nesting success, and predation on nests of neotropical birds, reviewed. *Ornithology Monographs* 36:575-594.
- [33] Kulesza, G. 1990. An analysis of clutch-size in New World passerine birds. *Ibis* 132:407-422.

- [34] Murray, B.G. Jr. 1985. Evolution of clutch size in tropical species of birds. *Ornithology Monographs* 36:505-519.
- [35] Ricklefs, R.E. 1977. On the evolution of reproductive strategies in birds: reproductive effort. *The American Naturalist* 111:453-478.
- [36] Willis, E.O. 1967. *The behavior of Bicolored Antbirds.* University of California press, Oakland.
- [37] Roper, J.J. and Goldstein, R.R. 1997. A test of the Skutch hypothesis: does activity at nests increase nest predation risk? *Journal of Avian Biology* 28:111-117.
- [38] Jetzt, W., Sekercioglu, C.H. and Böhning-Gaese, K. 2008. The worldwide variation in avian clutch size across species and space. *PLoS Biology* 6:2650-2657.
- [39] Del Hoyo, J., Elliot, A. and Christie, D.A. 1992. *Handbook of the birds of the world (Vol. 1-16)*. Lynx Edicions, Barcelona.
- [40] Schönwetter, M. and Meise, W. 1961. *Handbuch der Oologie (Lieferung 1-43).* Akademie Berlin, Berlin.

Appendix 1

Site	Coordinates	Terra-firme forest	Floodplain forest
AFF-House	S 12 36 42.6, W 69 11 44.9		Х
ARCC	S 12 2 47.6, W 69 40 37.0	Х	Х
AZUL	S 13 2 40.1, W 69 54 37.1		Х
BAL	S 12 51 0.3, W 69 27 27.0		Х
BOZ	S 11 35 12.8, W 69 38 56.9	Х	
CHUN	S 12 58 18.0, W 69 30 12.1		Х
CICRA	S 12 34 8.6, W 70 6 3.4	Х	Х
EI	S 12 50 13.3, W 69 17 36.4		Х
LIMON	S 12 32 20.9, W 68 51 42.1	Х	
MALI	S 12 56 2.1, W 69 31 2.2		Х
PAMPA	S 12 56 59.8, W 68 54 45.8		Х
PIE	S 12 3 23.5, W 69 31 43.4	Х	Х
RA	S 12 32 26.6, W 69 3 11.1		Х
SAONA	S 12 44 45.6, W 69 14 0.1		Х
SC	S 12 51 12.5, W 69 22 3.4		Х
TPL	S 12 49 27.7, W 69 24 10.7	Х	
TRC	S 13 8 3.2, W 69 36 38.9		Х
WASAI	S 12 51 2.1, W 69 28 9.3		Х

Classification of sites with terra-firme forest or floodplain forest (X indicates presence of forest type at location).

Appendix 2

Guild classification of captured bird species in Madre de Dios region, Peru based on Henriques et al. [16], Wunderle et al. [14] and Schulenberg et al. [23]. Lifehistory traits (average clutch size, number of broods per season, egg mass and female body mass) for estimation of the relative reproductive investment (RRI) based on Jetzt et al. [38], Del Hoyo et al. [39], Schönwetter and Meise [40] and field-data.

Species ^[1]	English name ^[1]	Average	Number of	Egg mass (g)	Female body	RRI	Feeding
		clutch size	season		mass (g)		guild
Alcedinidae							
Chloroceryle aenea	American Pygmy-kingfisher	3.5	1	2.40	14.05	0.5979	SVLI
Chloroceryle inda	Green-and-rufous Kingfisher	3.9	1	7.40	52.75	0.6471	SVLI
Bucconidae							
Bucco macrodactylus	Chestnut-capped Puffbird				25.00		I
Malacoptila semicincta	Semicollared Puffbird		1	7.40	44.00		I
Monasa morphoeus	White-fronted Nunbird	2.4	1	7.50	82.00	0.2195	SVLI
Monasa nigrifrons	Black-fronted Nunbird	3.0	1	7.90	83.00	0.2855	SVLI
Cardinalidae							
Cyanocompsa cyanoides	Blue-black Grossbeak	2.0	2		27.87		FI
Saltator grossus	Slate-colored Grosbeak	2.5	2		47.00		FI
Saltator maximus	Buff-throated Saltator	2.0	2	5.75	49.10	0.4684	FI
Columbidae							
Claravis pretiosa	Blue-Ground Dove	2.0	3	3.80	93.50	0.2438	F
Columbina talpacoti	Ruddy Ground-dove	2.0	3	3.60	45.27	0.4771	F
Geotrygon montana	Ruddy Quail-dove	2.0	3	5.30	115.2	0.2760	F
Leptotila rufaxilla	Grey-fronted Dove	1.4	3	6.80	149.0	0.1917	F
Conopophagidae							
Conopophaga peruviana	Ash-throated Gnateater	2.0	2		23.30		I
Cotingidae							
Lipaugus vociferans	Screaming Piha				82.60		FI
Cuculidae							
Crotophaga ani	Smooth-billed Ani	2.9	2	13.2	94.00	0.8145	I
Emberizidae							

Ammodramus aurifrons	Yellow-browed Sparrow	2.4	2	2.25	16.75	0.6448	F
Arremon taciturnus	Pectoral Sparrow	2.0	2	3.50	26.50	0.5283	IF
Oryzoborus angolensis	Chestnut-bellied Seed-finch	2.5	2	2.03	12.32	0.8239	F
Oryzoborus atrirostris	Black-billed Seed-finch				26.40		F
Paroaria gularis	Red-capped Cardinal	2.0	2	2.29	26.40	0.3470	IF
Sporophila caerulescens	Double-collared Seedeater	3.0	2	1.45	9.550	0.9110	F
Sporophila castaneiventris	Chestnut-bellied Seedeater			1.28	7.800		F
Sporophila schistacea	Slate-colored Seedeater	3.0	2	1.30	11.83	0.6593	F
Volatinia jacarina	Blue-black Grassquit	2.5	2	1.43	9.500	0.7526	F
Falconidae							
Micrastur gilvicollis	Lined Forest-falcon	2.4	1	28.0	196.5	0.3420	SVLI
Micrastur ruficollis	Barred Forest-falcon	2.4	1	29.0	261.0	0.2667	SVLI
Formicariidae							
Chamaeza nobilis	Striated Antthrush	2.0	2	7.60	134.0	0.2269	I
Formicarius analis	Black-faced Antthrush	2.0	2	9.00	56.60	0.6360	I
Formicarius colma	Rufous-capped Antthrush	2.0	2	8.30	50.10	0.6627	I
Furnariidae							
Anabazenops dorsalis	Dusky-cheeked Foliage-gleaner				39.00		I
Ancistrops strigilatus	Chestnut-winged Hookbill				34.50		MFI
Automolus infuscatus	Olive-backed Foliage-gleaner				40.50		MFI
Automolus melanopezus	Brown-rumped Foliage-gleaner				29.50		I
Automolus ochrolaemus	Buff-throated Foliage-gleaner	2.4	2	5.56	38.00	0.7023	I
Automolus rufipileatus	Chestnut-crowned Foliage-gleaner				34.50		I
Campylorhamphus trochilirostris	Red-billed Scythebill	2.0	2	5.85	42.50	0.5506	I
Deconychura longicauda	Long-tailed Woodcreeper	2.0	2		47.80		MFI
Dendrexetastes rufigula	Cinnamon-throated Woodcreeper	2.4	2	7.35	70.00	0.5040	I
Dendrocincla fuliginosa	Plain-brown Woodcreeper	1.7	2	6.35	35.00	0.6169	I
Dendrocincla merula	White-chinned Woodcreeper				40.00		AA
Dendrocolaptes certhia	Amazonian Barred Woodcreeper	1.0	2		90.10		AA
Dendrocolaptes picumnus	Black-banded Woodcreeper	2.0	2	7.05	85.00	0.3318	AA
Dendroplex picus	Straight-billed Woodcreeper	2.5	2		38.20		MFI

Furnarius leucopus	Pale-legged Hornero	2.0	2	4.95	49.00	0.4041	1
Glyphorhynchus spirurus	Wedge-billed Woodcreeper	1.7	2	1.75	14.82	0.4015	MFI
Hyloctistes subulatus	Striped Woodhaunter				29.50		MFI
Lepidocolaptes albolineatus	Lineated Woodcreeper		2	4.74	19.25		MFI
Nasica longirostris	Long-billed Woodcreeper				85.00		Ι
Philydor erythrocercum	Rufous-rumped Foliage-gleaner	2.0	2		24.50		MFI
Philydor erythropterum	Chestnut-winged Foliage-gleaner				32.00		MFI
Philydor pyrrhodes	Cinnamon-rumped Foliage-gleaner				29.50		MFI
Philydor ruficaudatum	Rufous-tailed Foliage-gleaner		2	3.68	26.50		MFI
Sclerurus albigularis	Gray-throated Leaftosser	2.0	2	5.41	40.00	0.5410	Ι
Sclerurus caudacutus	Black-tailed Leaftosser	2.0	2	5.58	38.00	0.5874	I
Sclerurus mexicanus	Tawny-throated Leaftosser	2.0	2		27.00		I
Simoxenops ucayalae	Peruvian Recurvebill				51.10		I
Sittasomus griseicapillus	Olivaceous Woodcreeper	3.0	2	2.35	12.00	1.1750	MFI
Synallaxis gujanensis	Plain-crowned Spinetail	2.4	2	2.93	17.50	0.8037	I
Synallaxis rutilans	Ruddy Spinetail	3.5	2	2.25	18.50	0.8514	MFI
Xenops minutus	Plain Xenops	2.0	2		11.00		MFI
Xiphocolaptes promeropirhynchus	Strong-billed Woodcreeper	2.5	2	13.3	140.0	0.4750	I
Xiphorhynchus elegans	Elegant Woodcreeper	2.0	2		36.86		MFI
Xiphorhynchus guttatus	Buff-throated Woodcreeper	1.7	2	7.46	56.00	0.4529	MFI
Xiphorhynchus ocellatus	Ocellated Woodcreeper		2		37.00		MFI
Galbulidae							
Galbula cyanescens	Bluish-fronted Jacamar	2.0	2	4.30	24.00	0.7167	I
Icteridae							
Clypicterus oseryi	Casqued Oropendola				101.4		F
Momotidae							
Baryphthengus martii	Rufous Motmot				146.6		IF
Electron platyrhynchum	Broad-billed Motmot	2.5	1	8.10	61.00	0.3320	IF
Momotus momota	Amazonian Motmot	3.5	1	7.50	140.0	0.1875	IF
Parulidae							
Dendroica petechia	Yellow Warbler	4.5	1	1.35	11.70	0.5192	I

Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 465-502, 2016

Phaeothlypis fulvicauda	Buff-rumped Warbler	2.0	1	2.39	14.90	0.3208	I
Picidae							
Celeus elegans	Chestnut Woodpecker	3.0	2	7.30	162.2	0.2701	MFIF
Picumnus rufiventris	Rufous-breasted Piculet			1.20	19.78		I
Pipridae							
Chiroxiphia pareola	Blue-backed Manakin	2.0	2	2.40	21.05	0.4561	F
Lepidothrix coronata	Blue-crowned Manakin	2.0	2		10.85		F
Machaeropterus pyrocephalus	Fiery-capped Manakin	2.0	2	1.58	10.60	0.5962	F
Manacus manacus	White-bearded Manakin	2.0	2	2.10	14.94	0.5622	F
Neopelma sulphureiventer	Sulphur-bellied Tyrant-manakin				15.00		IF
Pipra chloromeros	Round-tailed Manakin				16.10		F
Pipra fasciicauda	Band-tailed Manakin	2.0	2	2.75	16.73	0.6575	F
Pipra rubrocapilla	Red-headed Manakin	2.0	2	1.96	14.65	0.5352	F
Piprites chloris	Wing-barred Piprites		2	2.80	18.00		I
Xenopipo atronitens	Black Manakin				15.25		IF
Psittacidae							
Brotogeris versicolurus	White-winged Parakeet	4.5	1	3.55	60.00	0.2663	F
Ramphastidae							
Aulacorhynchus prasinus	Emerald Toucanet	2.2	2		170.0		FI
Pteroglossus azara	Ivory-billed Aracari	2.8	2		142.0		FI
Pteroglossus beauharnaesii	Curl-crested Aracari				222.0		FI
Selenidera reinwardtii	Red-billed Toucanet				153.5		FI
Strigidae							
Megascops watsonii	Tawny-bellied Screech-owl		1		160.1		SVLI
Thamnophilidae							
Cercomacra nigrescens	Blackish Antbird		2	3.00	20.50		I
Cercomacra serva	Black Antbird	2.0	2	2.40	16.00	0.6000	I
Dichrozona cincta	Banded Antbird				14.75		I
Epinecrophylla haematonota	Stipple-throated Antwren				10.10		MFI
Epinecrophylla leucophthalma	White-eyed Antwren				9.420		MFI
Epinecrophylla ornata	Ornate Antwren				9.540		MFI

Formicivora rufa	Rusty-backed Antwren	2.0	2		13.60		I
Frederickena unduligera	Undulated Antshrike	2.0	2		80.00		I
Gymnopithys salvini	White-throated Antbird	2.0	2		26.65		AA
Hylophylax naevius	Spot-backed Antbird	1.7	2	2.15	12.54	0.5829	I
Hypocnemis peruviana	Peruvian Warbling-antbird	2.0	2	2.20	12.70	0.6929	I
Hypocnemis subflava	Yellow-breasted Warbling-antbird	2.0	2	2.40	12.00	0.8000	I
Hypocnemoides maculicauda	Band-tailed Antbird	2.0	2	2.50	11.40	0.8772	I
Microrhopias quixensis	Dot-winged Antwren	2.0	2	1.50	9.500	0.6316	I
Myrmeciza atrothorax	Black-throated Antbird	1.0	2		16.00		I
Myrmeciza fortis	Sooty Antbird	2.0	2		45.00		I
Myrmeciza goeldii	Goeldi's Antbird	1.4	2		48.14		I
Myrmeciza hemimelaena	Chestnut-tailed Antbird	2.0	2	2.55	15.06	0.6773	I
Myrmeciza hyperythra	Plumbeous Antbird	2.0	2	5.25	33.29	0.6308	I
Myrmoborus leucophrys	White-browed Antbird	2.0	2		20.16		I
Myrmoborus myotherinus	Black-faced Antbird	2.0	2	2.25	19.40	0.4639	I
Myrmotherula axillaris	White-flanked Antwren	2.0	2	1.42	8.650	0.6567	MFI
Myrmotherula hauxwelli	Plain-throated Antwren	2.0	2	1.30	11.41	0.4557	MFI
Myrmotherula iheringi	Ihering's Antwren				8.250		MFI
Myrmotherula longicauda	Stripe-chested Antwren				8.750		I
Myrmotherula longipennis	Long-winged Antwren				9.700		MFI
Myrmotherula menetriesii	Gray Antwren		2	1.15	7.600		MFI
Neoctantes niger	Black Bushbird				30.30		I
Percnostola lophotes	White-lined Antbird	2.0	2	3.41	28.56	0.4773	I
Phlegopsis erythroptera	Reddish-winged Bare-eye				54.00		AA
Phlegopsis nigromaculata	Black-spotted Bare-eye	2.0	2		37.55		AA
Pygiptila stellaris	Spot-winged Antshrike				26.02		I
Rhegmatorhina melanosticta	Hairy-crested Antbird	2.0	2		31.80		AA
Sclateria naevia	Silvered Antbird	2.0	2	3.28	24.00	0.5467	I
Taraba major	Great Antshrike	2.4	2	6.80	60.70	0.5377	I
Thamnomanes ardesiacus	Dusky-throated Antshrike	2.0	2		17.40		MFI
Thamnomanes saturninus	Saturnine Antshrike				20.00		MFI

Thamnomanes schistogynus	Bluish-slate Antshrike	2.0	2		19.38		MFI
Thamnophilus aethiops	White-shouldered Antshrike	2.0	2	3.02	25.23	0.4788	MFI
Thamnophilus doliatus	Barred Antshrike	1.7	2	3.60	29.60	0.4135	I
Thamnophilus schistaceus	Plain-winged Antshrike	2.0	2		22.07		MFI
Willisornis poecilinotus	Scale-backed Antbird	2.0	2	3.50	19.36	0.7231	1
Thraupidae							
Euphonia chlorotica	Purple-throated Euphonia	3.9	3	1.15	11.15	1.2067	F
Habia rubica	Red-crowned Ant-tanager	2.5	2	4.00	31.11	0.6429	FI
Lanio versicolor	White-winged Shrike-tanager	2.0	2		18.15		MFI
Ramphocelus carbo	Silver-beaked Tanager	2.0	2	3.30	27.30	0.4835	IF
Tachyphonus cristatus	Flame-crested Tanager		2	3.20	33.60		MFIF
Tangara schrankii	Green-and-gold Tanager	2.0	2		19.67		MFI
Tinamidae							
Crypturellus bartletti	Bartlett's Tinamou		3	40.0	241.0		F
Trochilidae							
Amazilia lactea	Sapphire-spangled Emerald	2.0	2	0.46	3.600	0.5111	Ν
Campylopterus largipennis	Grey-breasted Sabrewing	2.0	2		7.000		Ν
Chlorostilbon mellisugus	Blue-tailed Emerald	2.0	2	0.40	3.970	0.4030	Ν
Chrysuronia oenone	Golden-tailed Sapphire	2.0	2	0.65	4.300	0.6047	N
Florisuga mellivora	White-necked Jacobin	2.0	2	0.82	7.130	0.4600	Ν
Glaucis hirsutus	Rufous-breasted Hermit	2.0	2	0.72	5.660	0.5088	N
Heliodoxa aurescens	Gould's Brilliant	2.0	2		6.000		N
Hylocharis cyanus	White-chinned Sapphire	2.0	2		3.150		Ν
Phaethornis hispidus	White-bearded Hermit	2.0	2	1.05	5.050	0.8317	N
Phaethornis longirostris	Long-billed Hermit	2.0	2		5.250		N
Phaethornis malaris	Great-billed Hermit	2.0	2		6.100		N
Phaethornis philippii	Needle-billed Hermit				4.750		Ν
Phaethornis ruber	Reddish Hermit	2.0	2	0.38	4.500	0.3378	Ν
Phaethornis superciliosus	Long-tailed Hermit	2.0	2	0.85	5.450	0.6239	N
Phaethornis stuarti	White-browed Hermit				2.500		N
Polytmus guainumbi	White-tailed Goldenthroat	2.0	2	0.70	4.760	0.5882	N

Thalurania furcata	Fork-tailed Woodnymph	2.0	2	0.54	4.200	0.5143	Ν
Threnetes leucurus	Pale-tailed Barbthroat	2.0	2	0.56	5.730	0.3909	Ν
Troglodytidae							
Cyphorhinus arada	Musician Wren	2.0	2		26.14		I
Microcerculus marginatus	Southern Nightingale-wren	2.4	2	3.74	17.50	1.0258	I
Thryothorus genibarbis	Moustached Wren		2	2.00	19.50		I
Troglodytes aedon	Northern House Wren	5.7	2	1.38	13.40	1.1740	I
Trogonidae							
Trogon collaris	Collared Trogon	2.4	1	8.50	53.22	0.3833	FI
Trogon curucui	Blue-crowned Trogon	2.4	1	6.20	51.00	0.2918	FI
Trogon melanurus	Black-tailed Trogon	2.4	1		70.00		FI
Turdidae							
Catharus ustulatus	Swainson's Thrush	3.5	2	3.60	35.00	0.7200	IF
Turdus albicollis	White-throated Thrush	2.4	2	6.45	53.00	0.5842	FI
Turdus amaurochalinus	Creamy-bellied Thrush	3.0	2	6.30	62.50	0.6048	IF
Turdus hauxwelli	Hauxwell's Thrush				71.25		IF
Turdus ignobilis	Black-billed Thrush	2.0	2	7.20	66.90	0.4305	IF
Turdus lawrencii	Lawrence's Thrush		2		73.00		IF
Tyrannidae							
Attila bolivianus	Dull-capped Attila	2.0	2	4.65	42.50	0.4376	I
Attila spadiceus	Bright-rumped Attila	2.8	2	3.80	37.70	0.5645	I
Cnemotriccus fuscatus	Fuscous Flycatcher	3.0	2	2.48	11.90	1.2504	I
Corythopis torquatus	Ringed Antpipit	2.0	2		16.00		I
Elaenia parvirostris	Small-billed Elaenia	2.4	2	2.03	13.80	0.7061	F
Elaenia spectabilis	Large Elaenia	2.0	2	2.80	29.00	0.3862	F
Elaenia strepera	Slaty Elaenia	2.0	2	2.88	19.00	0.6063	F
Empidonax alnorum	Alder Flycatcher	3.5	2	1.82	13.00	0.9800	I
Hemitriccus flammulatus	Flammulated Pygmy-tyrant				10.25		Ι
Hemitriccus griseipectus	White-bellied Tody-tyrant				8.950		I
Inezia inornata	Plain Tyrannulet		2	1.30	5.750		I
Laniocera hypopyrra	Cinereous Mourner	2.0	2		40.40		IF

Lathrotriccus euleri	Euler's Flycatcher	2.4	2	1.77	11.00	0.7724	I
Leptopogon amaurocephalus	Sepia-capped Flycatcher	2.4	2	2.17	11.20	0.9300	MFI
Lophotriccus eulophotes	Long-crested Pygmy-tyrant				7.250		I
Mionectes macconnelli	McConnell's Flycatcher	3.0	2		11.00		IF
Mionectes oleagineus	Ochre-bellied Flycatcher	3.2	2		13.00		IF
Mionectes olivaceus	Olive-striped Flycatcher	2.4	2	1.99	12.00	0.7960	F
Myiarchus ferox	Short-crested Flycatcher	2.4	2	3.38	28.75	0.5643	IF
Myiarchus tyrannulus	Brown-crested Flycatcher	3.9	2	3.68	29.80	0.9632	IF
Myiophobus fasciatus	Bran-colored Flycatcher	1.4	2	1.60	10.00	0.4480	I
Ochthornis littoralis	Drab Water-tyrant	3.5	2		13.40		Ι
Onychorhynchus coronatus	Royal Flycatcher	2.0	2	1.76	12.52	0.5623	I
Pachyramphus minor	Pink-throated Becard	4.9	2	2.45	37.00	0.6489	I
Pitangus sulphuratus	Great Kiskadee	3.9	2	5.80	60.50	0.7478	IF
Platyrinchus coronatus	Golden-crowned Spadebill	2.0	2		9.200		I
Platyrinchus platyrhynchos	White-crested Spadebill				12.25		I
Platyrinchus saturatus	Cinnamon-crested Spadebill				10.60		I
Ramphotrigon fuscicauda	Dusky-tailed Flatbill	2.0	2		19.00		Ι
Ramphotrigon megacephalum	Large-headed Flatbill	2.0	2	2.62	14.00	0.7486	I
Ramphotrigon ruficauda	Rufous-tailed Flatbill	3.0	2		19.75		I
Rhynchocyclus olivaceus	Olivaceous Flatbill	2.4	2	2.45	21.00	0.5600	I
Rhytipterna simplex	Greyish Mourner				35.50		I
Schiffornis turdina	Thrush-like Mourner	2.0	2	4.01	31.00	0.5174	Ι
Terenotriccus erythrurus	Ruddy-tailed Flycatcher	2.0	2	1.14	7.200	0.6333	I
Tyrannus melancholicus	Tropical Kingbird	3.2	2	4.10	37.60	0.6979	IF
Vireonidae							
Hylophilus hypoxanthus	Dusky-capped Greenlet				17.00		MFI
Hylophilus ochraceiceps	Tawny-crowned Greenlet	2.0	1	1.95	10.75	0.3628	

^[1]Species and English names based on Schulenberg et al. [23] and Del Hoyo et al. [39]. ^[a]Feeding guild: AA= army ant follower, F= solitary frugivore, FI= solitary frugivore-insectivore, I= solitary insectivore, IF= solitary insectivore-frugivore, MFI= mixed species insectivore flocks, MFIF= mixed species insectivore-frugivore flocks, N= nectarivore, SVLI= small vertebrates and large insects.

Appendix 3

Guild classification and life-history traits (average clutch size, number of broods per season, egg mass and female body mass) of West-European birds for estimation of the relative reproductive investment (RRI) based on Del Hoyo et al. [39] and field-data.

Species ^[1]	English name ^[1]	Average clutch size	Number of broods per season	Egg mass (g)	Female body mass (g)	RRI	Feeding guild ^[a]
Accipitridae							
Accipiter gentilis	Northern Goshawk	3.6	1	55.0	1206	0.1642	SVLI
Accipiter nisus	Eurasian Sparrowhawk	4.9	1	23.0	264.0	0.4269	SVLI
Buteo buteo	Eurasian Buzzard	2.8	1	53.2	915.0	0.1628	SVLI
Circus aeruginosus	Western Marsh-harrier	4.7	1	40.0	669.0	0.2810	SVLI
Circus cyaneus	Hen Harrier	4.5	1	31.0	527.0	0.2647	SVLI
Circus pygargus	Montagu's Harrier	4.2	1	25.0	370.0	0.2838	SVLI
Milvus migrans	Black Kite	2.5	1	56.0	850.0	0.1647	SVLI
Milvus milvus	Red Kite	2.1	1	61.0	1213	0.1056	SVLI
Pernis apivorus	European Honey-buzzard	2.0	1	45.0	620.0	0.1452	SVLI
Aegithalidae							
Aegithalos caudatus	Long-tailed Tit	10	1	0.90	8.000	1.1363	MFI
Alaudidae							
Alauda arvensis	Eurasian Skylark	3.9	2.7	3.35	34.60	1.0195	Ι
Galerida cristata	Crested Lark	4.4	2	3.24	44.10	0.6465	I
Lullula arborea	Woodlark	4.0	2	3.40	32.10	0.8474	I
Alcedinidae							
Alcedo atthis	Common Kingfisher	6.7	2	4.20	39.20	1.4357	SVLI
Anatidae							
Aix sponsa	Wood Duck	10	1	45.7	672.0	0.6801	FI
Aix galericulata	Mandarin Duck	10	1	44.0	512.0	0.8594	IF
Alopochen aegyptiacus	Egyptian Goose	8.5	1	97.0	2040	0.4042	FI
Anas crecca	Common Teal	9.5	1	29.0	324.0	0.8503	FI
Anas platyrhynchos	Mallard	11	1	51.0	1096	0.5119	SVLI

Anas platyrhynchos domesticus	Domestic Duck						SVLI
Anas acuta	Northern Pintail	8.0	1	43.0	735.0	0.4680	SVLI
Anas querquedula	Garganey	8.5	1	28.0	351.0	0.6781	SVLI
Anas clypeata	Nothern Shoveler	10	1	40.0	575.0	0.6957	I
Anser albifrons	Greater White-fronted Goose	5.5	1	114	1905	0.3291	FI
Anser anser	Greylag Goose	5.0	1	149	3108	0.2397	F
Anser anser domesticus	Domestic Goose						F
Anser indicus	Bar-headed Goose	5.0	1	135	2500	0.2700	FI
Aythya ferina	Common Pochard	9.0	1	65.0	832.0	0.7031	SVLI
Aythya nyroca	Ferruginous Duck	9.0	1	36.0	545.0	0.5945	SVLI
Aythya fuligula	Tufted Duck	9.5	1	53.0	867.0	0.5807	IF
Branta canadensis	Canada Goose	5.9	1	220	4390	0.2957	FI
Branta leucopsis	Barnacle Goose	4.5	1	103	1499	0.3092	F
Bucephala clangula	Common Goldeneye	9.3	1	60.0	787.0	0.7090	SVLI
Cairina moschata	Muscovy Duck	10	1	69.3	1285	0.5389	SVLI
Cygnus olor	Mute Swan	6.0	1	345	9600	0.2156	SVLI
Cygnus atratus	Black Swan	5.0	1	260	5450	0.2385	FI
Mareca penelope	Eurasian Wigeon	9.0	1	42.0	700.0	0.5400	FI
Mareca strepera	Gadwall	10	1	44.0	700.0	0.6286	FI
Mergus serrator	Red-breasted Merganser	9.0	1	73.0	984.0	0.6677	SVLI
Netta rufina	Red-crested Pochard	9.0	1	56.0	1100	0.4582	SVLI
Oxyura jamaicensis	Ruddy Duck	8.0	1	76.0	510.0	1.1922	I
Somateria mollissima	Common Eider	5.0	1	109	2142	0.2544	IF
Tadorna ferruginea	Ruddy Shelduck	8.5	1	83.0	1213	0.5819	SVLI
Tadorna tadorna	Common Shelduck	8.6	1	78.0	1043	0.6431	SVLI
Apodidae							
Apus apus	Common Swift	2.4	1	3.60	40.30	0.2144	I
Ardeidae							
Ardea cinerea	Grey Heron	4.5	1	60.0	1361	0.1984	SVLI
Ardea purpurea	Purple Heron	4.2	1	50.0	830.0	0.2530	SVLI
Botaurus stellaris	Eurasian Bittern	5.5	1	40.0	900.0	0.2444	SVLI

Bubulcus ibis	Cattle Egret	4.5	1	28.0	304.0	0.4145	SVLI
Casmerodius albus	Great Egret	4.0	1		960.0		SVLI
Egretta garzetta	Little Egret	4.0	1		495.0		SVLI
Ixobrychus minutus	Common Little Bittern	5.5	1	11.5	146.0	0.4332	SVLI
Nycticorax nycticorax	Black-crowned Night-heron	4.0	1	34.0	590.0	0.2305	SVLI
Burhinidae							
Burhinus oedicnemus	Eurasian Thick-knee	1.9	1	36.0	449.0	0.1523	SVLI
Camprimulgidae							
Camprimulgus europaeus	European Nightjar	2.0	1.5	8.20	76.00	0.3237	I
Certhiidae							
Certhia brachydactyla	Short-toed Treecreeper	5.7	2	1.16	9.700	1.3633	MFI
Certhia familiaris	Eurasian Treecreeper	5.4	2	1.14	9.100	1.3530	MFI
Charadriidae							
Charadrius alexandrines	Kentish Plover	3.0	1	9.00	47.10	0.5732	I
Charadrius dubius	Little Ringed Plover	3.9	2	7.70	39.20	1.5321	1
Charadrius hiaticula	Common Ringed Plover	3.8	2	12.0	65.40	1.3945	I
Vanellus vanellus	Northern Lapwing	3.9	1	25.5	189.0	0.5262	I
Ciconiidae							
Ciconia ciconia	White Stork	4.0	1	111	3325	0.1335	SVLI
Cisticolidae							
Cisticola juncidis	Zitting Cisticola	4.8	2	1.08	6.500	1.5951	I
Columbidae							
Columba livia	Rock Dove	1.9	5	18.0	267.5	0.6393	F
Columba oena	Stock Dove	2.3	2.5	17.0	298.0	0.3228	F
Columba palumbus	Common Woodpigeon	1.9	1	18.5	500.0	0.0703	FI
Streptopelia decaocto	Eurasian Collared-dove	2.0	2	9.60	197.0	0.1920	FI
Streptopelia turtur	European Turtle-dove	1.9	2	8.00	134.5	0.2260	FI
Corvidae							
Corvus corax	Common Raven	4.8	1	28.8	1147	0.1205	SVLI
Corvus cornix	Hood Crow	4.3	1	19.3	476.1	0.1743	SVLI
Corvus corone	Carrion Crow	4.3	1	19.8	490.0	0.1738	SVLI

Corvus frugilegus	Rook	3.8	1	16.0	443.3	0.1372	IF
Corvus monedula	Eurasian Jackdaw	4.7	1	11.1	230.0	0.2268	FI
Corvus splendens	House Crow	4.0	1	13.7	269.7	0.2032	IF
Garrulus glandarius	Eurasian Jay	5.4	1	8.50	161.4	0.2844	IF
Pica pica	Common Magpie	5.7	1	9.90	197.8	0.2853	SVLI
Cuculidae							
Cuculus canorus	Common Cuckoo	9.2	1	3.40	112.0	0.2793	I
Emberizidae							
Emberiza citrinella	Yellowhammer	3.9	2	3.00	26.80	0.8731	MFIF
Emberiza hortulana	Ortolan Bunting	4.6	2	2.48	19.10	1.1946	IF
Emberiza schoeniclus	Reed Bunting	4.9	1.7	2.19	17.90	1.0311	IF
Miliaria calandra	Corn Bunting	4.4	2	3.91	39.60	0.8689	FI
Falconidae							
Falco peregrinus	Peregrine Falcon	3.2	1		850.0		SVLI
Falco subbuteo	Eurasian Hobby	3.0	1		240.5		SVLI
Falco tinnunculus	Common Kestrel	4.7	1	20.0	252.0	0.3730	SVLI
Fringillidae							
Carduelis cabaret	Lesser Redpoll	4.6	2	1.21	10.60	1.0502	FI
Carduelis cannabina	Common Linnet	4.7	2	1.66	18.50	0.8435	F
Carduelis carduelis	European Goldfinch	4.5	2	1.53	14.80	0.9304	FI
Carduelis spinus	Eurasian Siskin	4.3	2	1.29	13.20	0.8405	FI
Carpodacus erythrinus	Common Rosefinch	5.1	1	2.25	23.90	0.4801	FI
Chloris chloris	European Greenfinch	5.0	2	2.17	25.90	0.8378	F
Coccothraustes coccothraustes	Hawfinch	4.5	1	3.89	52.90	0.3309	FI
Fringilla coelebs	Common Chaffinch	4.6	1	2.16	18.50	0.5371	IF
Fringilla montifringilla	Brambling	5.8	1	2.14	23.60	0.5259	FI
Loxia curvirostra	Red Crossbill	3.7	1	2.95	38.90	0.2806	FI
Loxia leucoptera	Two-barred Crossbill	4.0	1	2.53	31.60	0.3203	FI
Loxia pytyopsittacus	Parrot Crossbill	3.8	1	3.26	50.30	0.2463	F
Pyrrhula pyrrhula	Eurasian Bullfinch	5.0	2	2.41	22.50	1.0711	FI
Serinus serinus	European Serin	3.8	2	1.21	12.30	0.7476	FI

Gruidae							
Grus grus	Common Crane	2.0	1	183	5200	0.0704	SVLI
Haematopodidae							
Haematopus ostralegus	Eurasian Oystercatcher	2.8	1	47.0	632.5	0.2081	I
Hirundinidae							
Delichon urbica	Northern House Martin	4.3	2	1.64	19.50	0.7233	I
Hirundo rustica	Barn Swallow	4.6	2	1.90	18.70	0.9348	I
Riparia riparia	Collared Sand Martin	4.8	1	1.43	13.60	0.5026	I
Laniidae							
Lanius collurio	Red-backed Shrike	5.0	1	3.15	32.50	0.4846	SVLI
Lanius excubitor	Great Grey Shrike	5.8	1	5.30	64.50	0.4766	SVLI
Laridae							
Chlidonias hybridus	Whiskered Tern	2.7	1	16.0	86.00	0.5023	SVLI
Chlidonias niger	Black Tern	2.9	1	11.0	64.00	0.5002	SVLI
Larus argentatus	European Herring Gull	2.6	1		864.0		SVLI
Larus canus	Mew Gull	3.0	1	51.0	360.0	0.4250	I
Larus graellsii	Lesser Black-backed Gull	3.0	1	81.0	755.0	0.3219	SVLI
Larus marinus	Great Black-backed Gull	2.9	1	117	1486	0.2283	SVLI
Larus melanocephalus	Mediterranean Gull	3.0	1	42.0	282.5	0.4460	I
Larus michahellis	Yellow-legged Gull		1				SVLI
Larus minutus	Little Gull	2.2	1	19.0	98.00	0.4207	Ι
Larus ridibundus	Black-headed Gull	2.7	1		267.0		Ι
Sterna albifrons	Little Tern	2.2	1	10.0	51.67	0.4258	SVLI
Sterna hirundo	Common Tern	2.8	1	21.0	126.0	0.4667	SVLI
Sterna paradisaea	Arctic Tern	2.0	1	19.0	107.0	0.3551	SVLI
Sterna sandvicensis	Sandwich Tern	1.6	1	35.0	220.5	0.2540	SVLI
Motacillidae							
Anthus campestris	Tawny Pipit	4.5	1.4	2.73	28.00	0.6189	I
Anthus pratensis	Meadow Pipit	5.2	2	2.06	19.50	1.0987	I
Anthus trivialis	Tree Pipit	4.8	1		25.10		I
Motacilla alba	White Wagtail	5.4	1	2.30	20.70	0.6000	I

1.1549 0.6324 0.6345 0.9714 0.4822 0.3903	 MFI
0.6324 0.6345 0.9714 0.4822 0.3903	I I I MFI
0.6345 0.9714 0.4822 0.3903	I I MFI
0.6345 0.9714 0.4822 0.3903	I I MFI
0.9714 0.4822 0.3903	I MFI
0.9714 0.4822 0.3903	l MFI
0.4822	MFI
0.3903	
0.3903	
	IF
1.9600	I
	MFI
2.1290	MFIF
	MFI
	MFI
	MFI
0.8175	MFI
0.8239	FI
0.9941	FI
0.0874	SVLI
0.6075	FI
0.7922	FI
0.6010	FI
0.3937	FI
0.2968	FI
0.2968	FI
	0.8175 0.8239 0.9941 0.0874 0.6075 0.7922 0.6010 0.3937

Mongabay.com Open Access Journal - Tropical Conservation Science Vol. 9 (1): 465-502, 2016

Dendrocopos medius	Middle Spotted Woodpecker	5.6	1	4.00	58.80	0.3810	IF
Dendrocopos minor	Lesser Spotted Woodpecker	5.0	1	2.00	22.50	0.4444	MFIF
Dryocopus martius	Black Woodpecker	4.8	1	12.4	255.0	0.2334	I
Jynx torquilla	Eurasian Wryneck	8.5	1.2	2.60	35.90	0.7387	I
Picus viridis	Eurasian Green Woodpecker	6.1	1	8.50	186.0	0.2788	IF
Podicipedidae							
Podiceps cristatus	Great Crested Grebe	3.5	1	42.0	830.0	0.1771	SVLI
Podiceps grisegena	Red-necked Grebe	4.5	1	31.0	476.0	0.2931	SVLI
Podiceps nigricollis	Black-necked Grebe	3.5	1	21.0	357.5	0.2056	SVLI
Tachybaptus ruficollis	Little Grebe	5.0	2	14.0	187.0	0.7487	SVLI
Prunellidae							
Prunella modularis	Dunnock	5.1	2	2.13	21.10	1.0297	I
Psittacidae							
Psittacula krameri	Rose-ringed Parakeet	3.0	1		158.0		F
Rallidae							
Crex crex	Corncrake	8.9	1	13.0	138.0	0.8384	IF
Fulica atra	Common Coot	7.2	1	38.0	688.0	0.3977	FI
Gallinula chloropus	Common Moorhen	6.6	2	25.0	289.0	1.1419	IF
Porzana parva	Little Crake	6.8	2	8.00	49.50	2.1980	IF
Porzana porzana	Spotted Crake	10	2	6.00	87.50	1.4126	IF
Porzana pusilla	Baillon's Crake	7.4	1	6.00	46.00	0.9652	SVLI
Rallus aquaticus	Western Water Rail	8.5	2	13.0	104.0	2.1250	SVLI
Recurvirostridae							
Himantopus himantopus	Black-winged Stilt	4.0	1	22.0	185.5	0.4744	SVLI
Recurvirostra avosetta	Pied Avocet	3.9	1	32.0	325.3	0.3837	I
Regulidae							
Regulus ignicapillus	Common Firecrest	8.8	2	0.69	5.300	2.2980	1
Regulus regulus	Goldcrest	10	2	0.77	5.600	2.7500	MFI
Remizidae							
Remiz pendulinus	Eurasian Penduline-tit	4.5	1	0.95	10.25	0.4171	1
Scolopacidae							

Actitis hypoleucos	Common Sandpiper	4.0	1	12.0	51.00	0.9412	I
Calidris alpina	Dunlin	3.9	1	10.0	48.30	0.8075	I
Gallinago gallinago	Common Snipe	3.9	1	17.0	107.0	0.6196	I
Limosa limosa	Black-tailed Godwit	3.9	1	41.0	370.0	0.4322	I
Numenius arquata	Eurasian Curlew	3.8	1	77.0	1127	0.2596	IF
Philomachus pugnax	Ruff	3.7	1	22.0	109.0	0.7468	I
Scolopax rusticola	Eurasian Woodcock	3.8	2		302.0		I
Tringa totanus	Common Redshank	3.9	1	22.0	135.0	0.6356	I
Sittidae							
Sitta europaea	Eurasian Nuthatch	7.1	1	2.25	22.10	0.7229	I
Strigidae							
Aegolius funereus	Boreal Owl	5.8	1	12.5	167.0	0.4341	SVLI
Asio flammeus	Short-eared Owl	6.0	1	21.0	312.0	0.4038	SVLI
Asio otus	Nothern Long-eared Owl	4.4	1	22.0	278.0	0.3482	SVLI
Athene noctua	Little Owl	3.9	1		176.0		SVLI
Bubo bubo	Eurasian Eagle-owl	2.7	1	73.0	2438	0.0808	SVLI
Strix aluco	Tawny Owl	2.9	1	40.0	486.0	0.2387	SVLI
Sturnidae							
Sturnus vulgaris	Common Starling	5.1	2	7.00	78.30	0.9119	IF
Sylviidae							
Acrocephalus arundinaceus	Great Reed-warbler	4.8	1	3.15	28.40	0.5324	IF
Acrocephalus palustris	Marsh Warbler	4.5	1	1.85	11.40	0.7303	IF
Acrocephalus schoenobaenus	Sedge Warbler	5.3	1	1.65	11.50	0.7604	IF
Acrocephalus scirpaceus	Eurasian Reed-warbler	3.9	1	1.75	11.80	0.5784	IF
Cettia cetti	Cetti's Warbler	4.6	1	1.80	13.00	0.6369	I
Hippolais icterina	Icterine Warbler	4.7	1	1.76	13.20	0.6267	IF
Hippolais polyglotta	Melodious Warbler	4.3	1	1.60	11.00	0.6255	IF
Locustella fluviatilis	River Warbler	5.5	1	2.36	18.70	0.6941	I
Locustella luscinioides	Savi's Warbler	4.1	1.3		17.30		I
Locustella naevia	Western Grasshopper-warbler	5.2	2	1.73	15.00	1.1995	1
Phylloscopus collybita	Common Chiffchaff	5.5	2	1.21	7.200	1.8486	MFIF

Phylloscopus sibilatrix	Wood Warbler	5.9	1	1.32	10.10	0.7711	MFIF
Phylloscopus trochilus	Willow Warbler	6.6	1	1.20	9.100	0.8651	IF
Sylvia atricapilla	Blackcap	4.6	1	2.19	19.20	0.5247	IF
Sylvia borin	Garden Warbler	4.3	1	2.38	18.90	0.5415	IF
Sylvia communis	Greater Whitethroat	4.7	1	1.78	14.40	0.5810	IF
Sylvia curruca	Lesser Whitethroat	4.9	1	1.40	12.40	0.5532	I
Threskiornithidae							
Platalea leucorodia	Eurasian Spoonbill	3.5	1	76.0	1130	0.2354	SVLI
Troglodytidae							
Troglodytes troglodytes	Northern Wren	6.0	2	1.32	7.800	2.0308	I
Turdidae							
Erithacus rubecula	European Robin	5.0	2	2.40	18.50	1.2973	IF
Luscinia luscinia	Thrush Nightingale	4.8	1	3.18	25.50	0.5986	IF
Luscinia megarhynchos	Common Nightingale	4.9	1	2.65	19.40	0.6693	IF
Luscinia svecica	Bluethroat	6.2	1	2.02	18.60	0.6733	IF
Oenanthe oenanthe	Northern Wheatear	6.0	2	2.83	23.90	1.4209	IF
Phoenicurus ochruros	Black Redstart	4.9	2	2.16	16.20	1.3067	IF
Phoenicurus phoenicurus	Common Redstart	6.2	2	1.90	15.00	1.5707	IF
Saxicola torquata rubicula	Common Stonechat	5.2	2.5	1.97	14.80	1.7304	IF
Saxicola rubetra	Whinchat	6.0	1	2.06	16.70	0.7401	IF
Turdus merula	Common Blackbird	4.0	3	7.20	99.80	0.8657	IF
Turdus philomelos	Song Thrush	4.8	2.5	6.00	71.50	1.0070	IF
Turdus pilaris	Fieldfare	5.2	1	6.53	103.4	0.3284	IF
Turdus viscivorus	Mistle Thrush	4.0	2	7.80	123.2	0.5065	IF
Tytonidae							
Tyto alba	Common Barn-owl	5.7	2	22.0	309.0	0.8117	SVLI
Upupidae							
Upupa epops	Common Hoopoe	7.0	1	4.45	67.50	0.4615	SVLI

^[1]Species and English names based on Del Hoyo et al. [39]. ^[a]Feeding guild: F= solitary frugivore, FI= solitary frugivore-insectivore, I= solitary insectivore, IF= solitary insectivore-frugivore, MFI= mixed species insectivore flocks, MFIF= mixed species insectivore flocks, SVLI= small vertebrates and large insects.

Appendix 4

Species of birds captured more frequently in floodplain (FP) or terra-firme forest (TF). Test statistics and P-values are provided for Chi-square tests. Abundance data corrected per sampling effort.

		No. of captures			Chi-squar	ed	Feeding guild ^[a]	
Species ^[1]	English name ^[1]	FP	TF	X1 ²	df	P(Chi²)		RRI
Amazilia lactea	Sapphire-spangled Emerald	14	0	14.00	1	<0.001	Ν	0.551
Automolus infuscatus	Olive-backed Foliage-gleaner	56	44	17.18	7	0.03	MFI	
Chloroceryle aenea	American Pygmy-kingfisher	29	16	8.79	2	0.02	SVLI	0.598
Chloroceryle inda	Green-and-rufous Kingfisher	16	0	16.00	2	<0.001	SVLI	0.547
Columbina talpacoti	Ruddy Ground-dove	11	0	11.00	1	0.002	F	0.477
Dendrocincla merula	White-chinned woodcreeper	88	66	26.78	8	0.001	AA	
Habia rubica	Red-crowned Ant-tanager	56	44	17.18	5	0.008	FI	0.643
Hylophylax naevius	Spot-backed Antbird	31	5	12.20	2	0.004	I	0.583
Hypocneomoides maculicauda	Band-tailed antbird	19	0	19.00	3	<0.001	I	0.877
Myrmeciza hyperythra	Plumbeous Antbird	14	0	14.00	5	0.03	I	0.631
Myrmotherula axillaris	White-flanked Antwren	77	44	23.32	8	0.005	MFI	0.657
Myrmotherula hauxwelli	Plain-throated Antwren	196	82	62.54	7	<0.001	MFI	0.456
Myrmotherula longipennis	Long-winged Antwren	60	33	18.24	6	0.011	MFI	
Oryzoborus angolinensis	Chestnut-bellied Seed-finch	7	0	7.00	1	0.016	F	0.824
Percnostola lophotes	White-lined Antbird	7	0	7.00	1	0.016	I	0.477
Phaethornis hispidus	White-bearded Hermit	79	44	23.99	8	0.005	Ν	0.832
Philydor ruficaudatum	Rufous-tailed Foliage-gleaner	9	0	9.00	2	0.02	MFI	
Phlegopsis nigromaculata	Black-spotted Bare-eye	83	33	26.84	8	0.002	AA	
Pipra fasciicauda	Band-tailed Manakin	496	121	181.50	9	<0.001	F	0.658
Platyrinchus coronatus	Golden-crowned Spadebill	61	16	21.75	9	0.02	I	
Pteroglossus beauharnaesii	Curl-crested Aracari	9	0	9.00	1	0.005	FI	
Ramphocelus carbo	Silver-beaked Tanager	27	0	27.00	2	<0.001	IF	0.484
Sporophila caerulescens	Double-collared Seedeater	17	3	6.47	1	0.02	F	0.911
Tangara schrankii	Green-and-gold Tanager	20	0	20.00	4	<0.001	MFI	
Thamnomanes ardesiacus	Dusky-throated Antshrike	72	55	21.97	7	0.005	MFI	
Threnetes leucurus	Pale-tailed Barbthroat	43	27	12.94	5	0.047	Ν	0.391
Turdus albicollis	White-throated Thrush	64	16	23.10	6	0.002	FI	0.584

Turdua haunualli		22	0	22.00	6	0.002	15	
		10	0	22.00	0	0.002		0.420
		18	0	18.00	1	<0.001		0.430
Volatinia jacarina	Blue-black Grassquit	32	0	32.00	1	<0.001	F	0.753
Chiroxiphia pareola	Blue-backed Manakin	2	16	6.97	1	0.016	F	0.456
Crotophaga ani	Smooth-billed Ani	0	17	17.00	1	<0.001	I	0.814
Dendrocincla fuliginosa	Plain-brown Woodcreeper	45	61	18.41	6	0.01	I	0.617
Dichrozona cincta	Banded Antbird	4	17	6.06	1	0.027	I	
Elaenia spectabilis	Large Elaenia	2	17	6.97	1	0.016	F	0.386
Epinecrophylla leucopthalma	White-eyed Antwren	12	72	28.52	3	<0.001	MFI	
Formicarius analis	Black-faced Antthrush	48	66	20.03	6	0.005	I	0.636
Galbula cyanescens	Bluish-fronted Jacamar	7	17	5.27	1	0.043	I	0.716
Glaucis hirsutus	Rufous-breasted Hermit	42	132	45.27	6	<0.001	Ν	0.509
Glyphorynchus spirurus	Wedge-billed Woodcreeper	133	165	50.95	8	<0.001	MFI	0.401
Gymnopithys salvini	White-throated Antbird	114	182	54.76	7	<0.001	AA	
Hemitriccus flamulatus	Flammulated Pygmy-tyrant	5	28	10.79	2	0.009	I	
Hylophilus ochraceiceps	Tawny-crowned Greenlet	2	17	6.97	1	0.016	I	0.363
Hypocnemis subflava	Yellow-breasted Warbling-antbird	4	22	8.63	2	0.02	I	0.733
Lathrotriccus euleri	Euler's Flycatcher	1	33	15.81	1	< 0.001	I	0.772
Lepidothrix coronata	Blue-crowned Manakin	27	39	11.65	4	0.04	F	
Leptotila rufaxilla	Grey-fronted Dove	0	6	6.00	1	0.028	F	0.192
Myiophobus fasciatus	Bran-colored Flycatcher	2	17	6.97	1	0.017	I	0.448
Myrmeciza fortis	Sooty Antbird	0	11	11.00	1	0.002	I	
Myrmeciza hemimelaena	Southern Chestnut-tailed Antbird	37	77	23.96	6	0.001	I	0.677
Myrmoborus myotherinus	Black-faced Antbird	25	121	46.17	5	< 0.001	I	0.464
Myrmotherula longicauda	Stripe-chested Antwren	0	11	11.00	1	0.001	I	
Neopelma sulphureiventer	Sulphur-bellied Tyrant-manakin	0	11	11.00	1	0.002	IF	
Phaethornis malaris	Great-billed Hermit	2	22	9.68	1	0.004	N	
Phlegopsis erythroptera	Reddish-winged Bare-eye	0	11	11.00	1	0.002	AA	
Pipra chloromeros	Round-tailed Manakin	19	50	16.19	7	0.046	F	
Ramphotrigon fuscicauda	Dusky-tailed Flatbill	5	17	5.73	1	0.033	I	
Rhegmathorina melanosticta	Hairy-crested Antbird	4	17	6.06	1	0.027	AA	
Willisornis poecilinotus	Scale-backed Antbird	53	72	21.75	6	0.002	1	0.723

Xiphorhynchus elegans	Elegant Woodcreeper	41	72	21.69	9	0.02	MFI	
^[1] Species and English names based of	on Schulenberg et al. [23] and Del Hoyo et al. [3	9]. ^[a] Feeding g	uild based on o	classification in H	lenriques	et al. [16]. AA = arm	ny ant follower	, F = solitary frugivore,

FI = solitary frugivore-insectivore, I = solitary insectivore, IF = solitary insectivore-frugivore, MFI = mixed species insectivore flocks, N = nectarivore, SVLI = small vertebrates and large insects.

Appendix 5

Relative reproductive investments of tropical region birds per family and per feeding guild. Value of RRI with Standard Error and number of species used is shown. Tropical regions

riopical regions					
Family	RRI(SE)	n	Family	RRI(SE)	n
Alcedinidae	0.572(0.025)	2	Picidae	0.270	1
Bucconidae	0.253(0.033)	2	Pipridae	0.561(0.033)	5
Cardinalidae	0.468	1	Psittacidae	0.266	1
Columbidae	0.297(0.062)	4	Rhampastidae		
Conopophagidae			Strigidae		
Cotingidae			Thamnophilidae	0.601(0.034)	12
Cuculidae	0.814	1	Thraupidae	0.777(0.219)	3
Emberizidae	0.667(0.071)	7	Tinamidae		
Falconidae	0.304(0.037)	2	Trochilidae	0.526(0.038)	12
Formicariidae	0.508(0.141)	3	Troglodytidae	0.587(0.074)	2
Furnariidae	0.600(0.059)	14	Trogonidae	0.337(0.045)	2
Galbulidae			Turdidae	0.584(0.059)	4
Icteridae			Tyrranidae	0.687(0.057)	20
Momotidae	0.260(0.072)	2	Vireonidae	0.363	1
Parulidae	0.420(0.099)	2			
Feeding guild	RRI(SE)	n			
AA	0.332	1			
F	0.588(0.056)	20			
FI	0.474(0.064)	5			
I	0.629(0.034)	38			
IF	0.551(0.062)	12			
MFI	0.675(0.099)	8			
MFIF	0.270	1			
Ν	0.526(0.038)	12			
SVLI	0.376(0.064)	6			

Feeding guilds based on classification in Henriques et al. [16]. AA= army ant followers, F= solitary frugivores, FI= solitary frugivore-insectivores, I= solitary insectivores, IF= solitary insectivore-frugivore-frugivores, MFI= mixed species insectivore flocks, MFIF= mixed species insectivore-frugivore flocks, N= nectarivores, SVLI= small vertebrates and large insects.

Appendix 6

Relative reproductive investments of temperate region birds per family and per feeding guild. Value of RRI with Standard Error and number of species used is shown.

Temperate regions					
Family	RRI(SE)	n	Family	RRI(SE)	n
Accipitridae	0.222(0.033)	9	Muscicapidae	0.726(0.244)	2
Aegithalidae	1.136	1	Oriolidae	0.390	1
Alaudidae	0.837(0.107)	3	Paradoxornithidae	1.960	1
Alcedinidae	1.435	1	Paridae	1.473(0.656)	2
Anatidae	0.540(0.043)	28	Passeridae	0.909(0.085)	2
Apodidae	0.214	1	Phalacrocoracidae	0.873	1
Ardeidae	0.296(0.041)	6	Phasianidae	0.538(0.087)	5
Burhinidae	0.152	1	Picidae	0.407(0.073)	6
Camprimulgidae	0.323	1	Podicipedidae	0.356(0.133)	4
Certhiidae	1.358(0.005)	2	Prunellidae	1.029	1
Charadriidae	1.006(0.265)	4	Psittacidae		
Ciconiidae	0.133	1	Rallidae	1.296(0.251)	7
Cisticolidae	1.595	1	Recurvirostridae	0.429(0.045)	2
Columbidae	0.290(0.096)	5	Regulidae	2.253(0.226)	2
Corvidae	0.200(0.021)	8	Remizidae	0.417	1
Cuculidae	0.279	1	Scolopacidae	0.634(0.087)	7
Emberizidae	0.991(0.077)	4	Sittidae	0.722	1
Falconidae	0.373	1	Strigidae	0.301(0.064)	5
Fringilidae	0.645(0.077)	14	Sturnidae	0.911	1
Gruidae	0.070	1	Sylviidae	0.754(0.084)	16
Haematopodidae	0.208	1	Threskiornithidae	0.235	1
Hirundinidae	0.720(0.124)	3	Troglodytidae	2.031	1
Laniidae	0.480(0.004)	2	Turdidae	0.978(0.123)	13
Laridae	0.395(0.028)	11	Tytonidae	0.811	1
Motacilidae	0.789(0.107)	6	Upupidae	0.461	1
Feeding guild	RRI(SE)	n			
AA					
F	0.491(0.103)	7			
FI	0.541(0.050)	32			
I	0.810(0.070)	46			
IF	0.770(0.070)	42			
MFI	1.317(0.318)	6			
MFIF	1.213(0.327)	5			
Ν					
SVLI	0.376(0.064)	62			

Feeding guilds based on classification in Henriques et al. [16]. AA= army ant followers, F= solitary frugivores, FI= solitary frugivore-insectivores, I= solitary insectivores, IF= solitary insectivore-frugivore-frugivores, MFI= mixed species insectivore flocks, MFIF= mixed species insectivore-frugivore flocks, N= nectarivores, SVLI= small vertebrates and large insects.