|
|
Conservation of neotropical herpetofauna: research trends and challenges [ pages 359-375 ]J. Nicolás Urbina-Cardona1,2
Abstract The Neotropics harbor between 30-50% of the world’s herpetofauna. However, little is known about the ecology and natural history of many species, making conservation strategies difficult to plan. After reviewing published papers on world herpetofauna conservation, it was shown that conservation biology has a low impact factor in scientific journals in comparison with other related disciplines such as evolutionary biology and ecology. Moreover, herpetology has one of the lowest impact factors within the biological sciences journals. The number of publications on amphibian and reptile conservation has increased in recent years; however, only 31% of the papers on herpetofaunal conservation have been published in high impact journals. There are many challenges to overcome in the conservation of the Neotropical herpetofauna. Uniform and stable taxonomic nomenclature is critical to avoid overestimation of species richness and diversity for conservation assessments, and in the context of legal proceedings. Herpetofaunal research needs to be conducted within the appropriate socio-political and economic framework, in order to effectively implement conservation area networks. It is important to reevaluate the role of protected area systems in ensuring the persistence of communities and populations, and to identify strategies and future conservation priorities, based on climate-change scenarios. Population and community studies at different spatial and temporal scales are necessary to understand herpetofauna responses to anthropogenic disturbances, habitat loss and fragmentation, edge and matrix effects, and their synergy with micro-climatic gradients, emergent diseases and shifting patterns of genetic diversity. One of the biggest challenges for herpetofaunal conservation science in the neotropics is to control habitat loss and increase landscape connectivity along altitudinal gradients, while at the same time control species invasion that alter native species’ interactions and spread emergent diseases (e.g. Chytridiomycosis) facilitated by climate change. Full Text PDF General interest news article Reader comments are generally moderated. If you find something inappropriate, please contact Tropical Conservation Science. The opinions expressed in reader comments are those of the author only, and do not necessarily reflect the opinions of other authors or Tropical Conservation Science. |
Tropical Conservation Science is an open-access e-journal that publishes research relating to conservation of tropical forests and other tropical ecosystems.
Volume 1: Issue 3 Table of Contents Articles News article All issues Mar 2008 Jun 2008 Sep 2008 Dec 2008 Mar 2009 Jun 2009 Sep 2009 Dec 2009 Mar 2010 Jun 2010 Sep 2010 Dec 2010 Mar 2011 Jun 2011 Sep 2011 Dec 2011 Mar 2012 Jun 2012 Sep 2012 Dec 2012 Mar 2013 Jun 2013 Aug 2013 Sep 2013 Nov 2013 Dec 2013 Mar 2014 Jun 2014 Sep 2014 Dec 2014 Mar 2015 Jun 2015 Sep 2015 Dec 2015 Mar 2016 Jun 2016 Most downloaded 2008 2009 2010 2011 2012 All time ADVERTISEMENT SEARCH This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
About | Privacy Copyright mongabay.com 2008-2014 |